eCommons

 

Dataset for Quantifying Morphological Changes & Sediment Transport Pathways on Comet 67P/Churyumov-Gerasimenko

Other Titles

Abstract

These files contain data supporting the results reported in Barrington et al., 2023: Quantifying Morphological Changes and Sediment Transport Pathways on Comet 67P/Churyumov-Gerasimenko. In Barrington et al., 2023 we found the following: Comets are active geological worlds with primitive surfaces that have been shaped to varying degrees by sublimation-driven sediment transport processes and mass wasting process. Rosetta’s rendezvous with comet 67P/Churyumov-Gerasimenko (67P) in 2014 provided data with the necessary spatial and temporal resolutions to observe many evolutionary processes on micro-gravity worlds. Rosetta’s observations have thus far revealed that many changes to the surface occurred within 67P’s smooth terrains, vast sedimentary deposits that blanket a significant fraction of the nucleus. Understanding the global context of these changes, and therefore the sediment transport pathways that govern the evolution of 67P’s surface requires a thorough description of their changing morphologies, and an evaluation of existing global-scale spatial and temporal trends. Accordingly, we present a time-resolved synthesis of erosion and deposition activity on comet 67P as it passed through its August 13, 2015 perihelion from September, 2014 to August, 2016. Our mapping results indicate that, around perihelion, sediment is globally redistributed inter-regionally from 67P’s more active south to the north. Equally important, however, are local, topographically-influenced sediment transport processes, with large volumes of sediment moving intra-regionally over sub-kilometer distances. We also show evidence for regions of near-zero net erosion/deposition between approximately 30–60° N latitude, which may act as terminal sedimentary sinks, with remobilization of these materials hindered by multiple factors. Our work therefore provides the most complete mapping of sediment transport processes and pathways across 67P, a critical step toward understanding the global landscape evolution of both 67P and other comets.

Journal / Series

Volume & Issue

Description

Sponsorship

Rosetta Data Analysis Program grant #80NSSC19K1307 and by the Heising-Simons Foundation (51 Pegasi b Fellowship to S.B.)

Date Issued

2023-06-07

Publisher

Keywords

small body geology; surface evolution; change detection

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Attribution-ShareAlike 4.0 International

Types

dataset

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record

Version History

Now showing 1 - 1 of 1
VersionDateSummary
1*
2023-06-07 09:44:16
* Selected version