eCommons

 

Data from: Earthquake Initiation from Laboratory Observations and Implications for Foreshocks

Other Titles

Abstract

These data are from Laboratory Earthquake Experiments from the Cornell 3 m apparatus in support of the following research: This paper reviews laboratory observations of earthquake initiation and describes new experiments on a 3 m rock sample where the nucleation process is imaged in detail. Many of the laboratory observations are consistent with previous work that showed a slow and smoothly accelerating earthquake nucleation process that expands to a critical nucleation length scale Lc, before it rapidly accelerates to dynamic fault rupture. The experiments also highlight complexities not currently considered by most theoretical and numerical models. This includes a loading rate dependency where a “kick” above steady state produces smaller and more abrupt initiation. Heterogeneity of fault strength also causes abrupt initiation when creep fronts coalesce on a stuck patch that is somewhat stronger than the surrounding fault. Taken together, these two mechanisms suggest a rate-dependent “cascade-up” model for earthquake initiation. This model simultaneously accounts for foreshocks that are a byproduct of a larger nucleation process and similarities between initial P wave signatures of small and large earthquakes. A diversity of nucleation conditions are expected in the Earth’s crust, ranging from slip limited environments with Lc < 1 m, to ignition-limited environments with Lc > 10 km. In the latter case, Lc fails to fully characterize the initiation process since earthquakes nucleate not because a slipping patch reaches a critical length but because fault slip rate exceeds a critical power density needed to ignite dynamic rupture.

Journal / Series

Volume & Issue

Description

Sponsorship

This work was sponsored by USGS Earthquake hazards grant G18AP00010 and National Science Foundation grants EAR-1645163, EAR-1763499, and EAR-1847139.

Date Issued

2019-12

Publisher

Keywords

earthquake nucleation; instability; bifurcation; friction; rupture propagation; heterogeneity

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

McLaskey, G. C. (2019) Earthquake Initiation from Laboratory Observations and Implications for Foreshocks. Journal of Geophysical Research, https://doi.org/10.1029/2019JB018363

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

CC0 1.0 Universal

Types

dataset

Accessibility Feature

Accessibility Hazard

none

Accessibility Summary

Link(s) to Catalog Record