K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory

Other Titles

This thesis consists of two chapters. In the first chapter, we compute the K theory of weight varieties by using techniques in Hamiltonian geometry. In the second chapter, we construct a set of divided difference operators in equivariant KK -theory. Let T be a compact torus and (M, [omega] ) a Hamiltonian T -space. In Chapter 1, we give a new proof of the K -theoretic analogue of the Kirwan surjectivity theorem in symplectic geometry (see [HL1]) by using the equivariant version of the Kirwan map introduced in [G2]. We compute the kernel of this equivariant Kirwan map. As an application, we find the presentation of the K -theory of weight varieties, which are the symplectic quotients of complete flag varieties G/T , as the quotient ring of the T -equivariant K -theory of flag varieties by the kernel of the Kirwan map, where G is a compact, connected and simply-connected Lie group. Demazure [D1], [D2], [D3] defined a set of isobaric divided difference operators on the representation ring R(T ). It can be seen as a decomposition of the classical Weyl character formula. In [HLS], Harada, Landweber and Sjamaar defined an analogous set of divided difference operators on the equivariant K -theory. In Chapter 2, we explicitly define these operators in the setting of equivariant KK theory first defined by Kasparov [K1], [K2]. It is a generalization of the results in [D3] and [HLS]. Due to the elegance and generality of equivariant KK -theory, some interesting applications of the result will also be given.

Journal / Series
Volume & Issue
Date Issued
Symplectic Geometry; Operator Algebras; Divided difference operators; KK-theory
Effective Date
Expiration Date
Union Local
Number of Workers
Committee Chair
Sjamaar, Reyer
Committee Co-Chair
Committee Member
Holm, Tara S.
Knutson, Allen
Degree Discipline
Degree Name
Ph. D., Mathematics
Degree Level
Doctor of Philosophy
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
Link(s) to Reference(s)
Previously Published As
Government Document
Other Identifiers
Rights URI
dissertation or thesis
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record