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This thesis consists of two chapters. In the first chapter, we compute the K-

theory of weight varieties by using techniques in Hamiltonian geometry. In the

second chapter, we construct a set of divided difference operators in equivariant

KK-theory.

Let T be a compact torus and (M,ω) a Hamiltonian T -space. In Chapter 1, we

give a new proof of the K-theoretic analogue of the Kirwan surjectivity theorem

in symplectic geometry (see [HL1]) by using the equivariant version of the Kirwan

map introduced in [G2]. We compute the kernel of this equivariant Kirwan map.

As an application, we find the presentation of the K-theory of weight varieties,

which are the symplectic quotients of complete flag varieties G/T , as the quotient

ring of the T -equivariant K-theory of flag varieties by the kernel of the Kirwan

map, where G is a compact, connected and simply-connected Lie group.

Demazure [D1], [D2], [D3] defined a set of isobaric divided difference operators

on the representation ring R(T ). It can be seen as a decomposition of the clas-

sical Weyl character formula. In [HLS], Harada, Landweber and Sjamaar defined

an analogous set of divided difference operators on the equivariant K-theory. In

Chapter 2, we explicitly define these operators in the setting of equivariant KK-

theory first defined by Kasparov [K1], [K2]. It is a generalization of the results

in [D3] and [HLS]. Due to the elegance and generality of equivariant KK-theory,

some interesting applications of the result will also be given.
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CHAPTER 1

K-THEORY OF WEIGHT VARIETIES

1.1 Background

1.1.1 Symplectic Geometry

A symplectic manifold is a pair (M,ω) consisting of a smooth manifold M and a

symplectic form ω which is a 2-form that is closed, i.e. dω = 0 and nondegenerate,

i.e. for all p ∈ M , there does not exist non-zero X ∈ TM such that ω(X, Y ) = 0

for all Y ∈ TM .

Remark 1 Note that ω is skew-symmetric, that is, ω(X, Y ) = −ω(Y,X) for all

X, Y ∈ TM . Recall that in odd dimensions antisymmetric matrices are not in-

vertible. Since ω is a non-dengerate 2-form, the skew-symmetric condition implies

that all symplectic manifolds (M,ω) have even dimensions.

The symplectic form ω on M allows us to associate to each function H ∈

C∞(M) a vector field XH , called its Hamiltonian vector field

dH = ιXHω

Note that XH is unique by the non-dengeneracy condition on ω.

Conversely, given a vector field X on M , if X = XH for some functions H ∈

C∞(M), then X is called a Hamiltonian vector field and H is called its Hamiltonian

function. The Hamiltonian function H is unique only up to an additive constant.
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Let G be a compact connected Lie group acting smoothly on M . This action

is called symplectic if it preserves the symplectic form ω, that is

g∗ω = ω

for all g ∈ G. The G-action on M is called Hamiltonian if it is symplectic and each

ξM , ξ ∈ g, is a Hamiltonian vector field. In this case, there is a map φ : M −→ g∗,

called a moment map, satisfying the following properties:

(i) φ is equivariant with respect to the G-action on M and the coadjoint action

of G on g∗, that is,

φ(g.p) = Ad∗(g)(φ(p))

for all p ∈M and g ∈ G.

(ii) For each ξ ∈ g∗, the function φξ ∈ C∞(M) defined by φξ(p) = 〈φ(p), ξ〉 is

a Hamiltonian function for the vector field ξM :

dφξ = ιξMω

A compact symplectic manifold (M,ω) on which the G-action is Hamiltonian

is called a compact Hamiltonian G-space.

In this Chapter, we will only deal with a compact torus action, so we will use

the T -action on M as our notation instead, where T is a compact torus. Let T ′ be

a subtorus in T , φ|T ′ : M → t′∗ is the restriction of the T -action to the T ′-action.

We call φ|T ′ the component of the moment map corresponding to T ′ in T .
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1.1.2 Representation ring and Equivariant K-theory

Let G be a compact Lie group, the representation ring of G, R(G), consists

of all formal differences of isomorphism classes of finite dimensional complex-

linear representations of G. Addition in R(G) is given by the direct sum of

representations. Multiplication in R(G) is given by the tensor products of rep-

resentations over C. Alternatively, R(G) can be defined as the free abelian

group generated by all irreducible characters. For example, let T be a maxi-

mal torus in G, let X (T ) = Hom(T, U(1)) be the character group of T . Then

R(T ) = Z[X (T )]. Note that X (T ) is a discrete group. The multiplication

is defined by (
∑
λgg)(

∑
µhh) =

∑
g,h λgµhgh for g ∈ G, h ∈ H,λg, µh ∈ Z.

In fact, the character group of a torus of rank n is isomorphic to Zn. Thus

R(T ) ∼= Z[a1, a
−1
1 , ..., an, a

−1
n ] which is a ring of Laurent polynomials with coef-

ficients in Z.

The G-equivariant K-theory of a compact G-space M , K0
G(M), is the

Grothendieck ring of virtual G-equivariant complex bundles over M . In partic-

ular, if M is a point, then

K0
G(pt) ∼= R(G)

In this case a G-vector bundle is just a (finite-dimensional) G-module. If G is

trivial, then we use the notation K0(M) instead.

Given a continuous map M → N where M,N are compact G-spaces, we can

pullback a G-vector bundle on N to the corresponding G-vector bundle on M .

This operation is well-behaved with respect to the isomorphism classes of vector

bundles. We obtain a map f ∗ : K0
G(N) → K0

G(M). So, K0
G is a functor from

compact G-spaces to commutative rings. Note that K0
G(M) is naturally endowed

with a R(G)-module structure because any G-space X has a natural map onto a
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point (so that we have the map R(G) → K0
G(M)). For further properties about

equivariant K-theory, see [S].

The main theme of Chapter 2 is to compute the K-theory of certain compact

manifolds, Weight Varieties, by using techniques in Hamiltonian geometry.

Alternatively, equivariant K-theory can be defined by using equivariant KK-

theory of C∗-algebras, see Section 2.2.

1.2 Introduction

For M a compact Hamiltonian T -space, where T is a compact torus, we have a

moment map φ : M → t∗. For any regular value µ of φ, φ−1(µ) is a submanifold of

M and has a locally free T -action by the invariance of φ. The symplectic reduction

of M at µ is defined as M//T (µ) := φ−1(µ)/T . The parameter µ is surpressed

when µ = 0. Kirwan [K] proved that the natural map, which is now called the

Kirwan map,

κ : H∗T (M ;Q)→ H∗T (φ−1(0);Q) ∼= H∗(M//T ;Q)

induced from the inclusion φ−1(0) ⊂M is a surjection when 0 ∈ t∗ is a regular value

of φ. This result was done in the context of rational Borel equivariant cohomology.

In the context of complex K-theory, a theorem of Harada and Landweber [HL1]

showed that

κ : K∗T (M)→ K∗T (φ−1(0))

is a surjection. This result was done over Z.

In Section 1.3, we give another proof of this theorem by using equivariant
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Kirwan map, which was first introduced by Goldin [G2] in the context of rational

cohomology. It can also be seen as an equivariant version of the Kirwan map.

Theorem 2 Let T be a compact torus and M be a compact Hamiltonian T -space

with moment map φ : M → t∗. Let S be a circle in T , and φ|S := M → R be the

corresponding component of the moment map. For a regular value 0 ∈ t∗ of φ|S,

the equivariant Kirwan map

κS : K∗T (M)→ K∗T (φ|−1
S (0))

is a surjection.

As an immediate corollary of a result in [HL1], we also find the kernel of this

equivariant Kirwan map.

In Section 1.4, for the special case G = SU(n), we find an explicit formula

for the K-theory of weight varieties, the symplectic reduction of flag varieties

SU(n)/T . The main result is Theorem 12. The results in this section are the

K-theoretic analogues of [G1].

1.3 Equivariant Kirwan map in K-theory

We fix the notations about Morse theory. Let f : M → R be a Morse function on

a compact Riemannian manifold M . Consider its negative gradient flow on M ,

let {Ci} be the connected components of the critical set of f . Define the stratum

Si to be the set of points of M which flow down to Ci by their paths of steepest

descent. There is an ordering on I: i ≤ j if f(Ci) ≤ f(Cj). Hence we obtain a
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smooth stratification of M = ∪Si. For all i, j ∈ I, denote

M+
i =

⋃
j≤i

Sj, M−
i =

⋃
j<i

Sj

As we are working in the equivariant category, we require that the Morse function

and the Riemannian metric to be T -invariant.

In the following, we will consider the norm square of the moment map. In gen-

eral, it is not a Morse function due to the possible presence of singularities of the

critical sets but the norm square of the moment map still yields a smooth stratifi-

cations and the results of the Morse-Bott theory still holds in this general setting

(Such functions are now called the Morse-Kirwan functions). For the descriptions

and properties of these functions, see [K]. Kirwan proved that the Morse-Kirwan

functions are equivariantly perfect in the context of rational cohomology. For more

results in this direction, see [K] and [L]. In the context of equivariant K-theory,

the following result is shown in [HL1]:

Lemma 3 (Harada and Landweber) Let T be a compact torus and (M,ω) be

a compact Hamiltonian T -space with moment map φ : M → t∗. Let f = ||φ||2 be

the norm square of the moment map. Let {Ci} be the connected components of the

critical sets of f and the stratum Si be the set of points of M which flow down to

Ci by their paths of steepest descent. The inclusion Ci → Si of a critical set into

its stratum induces an isomorphism K∗T (Si) ∼= K∗T (Ci).

For a smooth stratification M = ∪Si defined by a Morse-Kirwan function f ,

i.e. the strata Si are locally closed submanifolds of M and each of them satisfies

the closure property Si ⊆ M+
i . We have a T -normal bundle Ni to Si in M . By

excision, we have

K∗T (M+
i ,M

−
i ) ∼= K∗T (Ni, Ni\Si)

6



If Ni is complex, by Thom Isomorphism we have

K∗T (Ni, Ni\Si) ∼= K
∗−d(i)
T (Si)

where the degree d(i) of the stratum is the rank of its normal bundle Ni. Since the

collection of the sets M+
i gives a filtration of M , we obtain a filtration of K∗T (M)

and a spectral sequence

E1 =
⊕
i∈I

K∗T (M+
i ,M

−
i ) =

⊕
i∈I

K
−d(i)
T (Si), E∞ = GrK∗T (M)

which converges to the associated graded algebra of the equivariant K-theory of

M . By Lemma 3, the spectral sequence becomes

E1 =
⊕
i∈I

K
∗−d(i)
T (Ci), E∞ = GrK∗T (M)

Definition 4 The function f is called equivariantly perfect for equivariant K-

theory if the above spectral sequence for equivariant K-theory collapses at the E1

page, or equivalently speaking, we have the following short exact sequences:

0 −→ K
∗−d(i)
T (Ci) −→ K∗T (M+

i ) −→ K∗T (M−
i ) −→ 0

for each i ∈ I.

In [HL1], Harada and Landweber showed the following theorem. (Indeed, they

showed it for compact Lie group G. But in our paper, we only need to consider

the abelian case.)

Theorem 5 (Harada and Landweber) Let T be a compact torus and (M,ω)

be a compact Hamiltonian T -space with the moment map φ : M → t∗. The norm

square of the moment map f = ||φ||2 is an equivariantly perfect Morse-Kirwan
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function for equivariant K-theory. By the Bott-periodicity in complex equivariant

K-theory, we can rewrite the short exact sequences as:

0 −→ K∗T (Ci) −→ K∗T (M+
i ) −→ K∗T (M−

i ) −→ 0

Let φ|S : M → R be the component of the moment map φ corresponding to a

circle S in T . Equivalently we are considering a compact Hamiltonian S-manifold

with the moment map φ|S. By Theorem 5 above, the norm square of the moment

map ||φ|S||2 is an equivariantly perfect Morse-Kirwan function for equivariant K-

theory. We can give our proof of Theorem 2 now.

Proof of Theorem 2. Our proof is essentially the K-theoretic analogue of

Theorem 1.2 in [G2]. For the Morse-Kirwan function f = ||φ|S||2, denote C0 =

f−1(0) = φ|−1
S (0).

First, we need to show that K∗T (M+
i )→ K∗T (φ|−1

S (0)) is surjective for all i ∈ I.

We will show it by induction.

Notice that K∗T (M+
0 ) ∼= K∗T (C0) = K∗T (φ|−1

S (0)) by Theorem 5. Assume the

inductive hypothesis that K∗T (M+
i ) → K∗T (C0) is surjective for 0 ≤ i ≤ k − 1. By

the equivariant homotopy equivalence, we have

K∗T (M−
k ) ∼= K∗T (M+

k−1)

Hence, we now have the surjection of

K∗T (M−
k ) ∼= K∗T (M+

k−1)→ K∗T (C0) (1.1)

By Theorem 5, we know that K∗T (M+
i )→ K∗T (M−

i ) is a surjection for each i. Using

it and equation (2.12), K∗T (M+
k )→ K∗T (C0) is a surjection and hence our induction

works.

8



Notice that K∗T (M) = K∗T (lim−→M+
i ) = lim←−K

∗
T (M+

i ), these equalities hold be-

cause we have the surjections K∗T (M+
i ) → K∗T (M−

i ) for all i. Hence we have the

surjection result for κS : K∗T (M)→ K∗T (C0) = K∗T (φ|−1
S (0)), as desired.

Corollary 6 Let T be a compact torus and M be a compact Hamiltonian T -space

with moment map φ : M → t∗. Suppose that T acts freely on the zero level set of

the moment map. Then

κ : K∗T (M)→ K∗(M//T )

is a surjection.

Proof. Choose a splitting of T = S1×S2× ...×SdimT
where each Si is quotiented

out one at a time. Since T acts freely on the zero level set of the moment map, by

Theorem 2, we have

κS1 : K∗T (M)→ K∗T (φ|−1
S1

(0)) ∼= K∗T/S1
(M//S1)

is a surjection. By reduction in stages, we have

K∗T (M)→ K∗T/S1
(M//S1)→ K∗T/(S1×S2)(M//(S1×S2))→ ...→ K∗T/T (M//T ) = K∗(M//T )

as desired.

We compute the kernel of our equivariant Kirwan map, which can be seen as a

K-theoretic analogue of [G2].

Theorem 7 Let T be a compact torus and M be a compact Hamiltonian T -space

with moment map φ : M → t∗. Let T ′ be a subtorus in T . Let φ|T ′ be the corre-

sponding moment map for the Hamiltonian T ′-action on M . For 0 a regular value

of φ|T ′, the kernel of the equivariant Kirwan map

κT ′ : K
∗
T (M)→ K∗T (φ|−1

T ′ (0))

9



is the ideal 〈K t′
T 〉 generated by K t′

T = ∪ξ∈t′Kξ
T where

Kξ
T = {α ∈ K∗T (M) | α|C = 0 for all connected components C of MT with 〈φ(C), ξ〉 ≤ 0}

Proof. Choose a splitting of T ′ = S×S× ...×S. For each S in T ′, let φ|S be the

corresponding component of the moment map φ. By Theorem 3.1 in [HL2], the

kernel of the equivariant Kirwan map κS is generated by Kξ
T and K−ξT for a choice

of generator ξ ∈ s. By successive application of this result to one-dimensional

subtori of T ′, we get our result as desired.

1.4 K-theory of weight variety

1.4.1 Weight varieties

If G = SU(n), we can naturally identify the set of Hermitian matrices H with

g∗ by the trace map, i.e. tr : (H) → g∗ defined by A 7→ i.tr(A). So λ ∈ t∗ is

just a real diagonal matrix with entries λ1, λ2, ..., λn in the diagonal. Through

this identification, M = Oλ is an adjoint orbit of G through λ. The moment

map corresponding to the T -action on Oλ takes a matrix to its diagonal entries,

call it µ ∈ t∗. Hence, Oλ//T (µ), µ ∈ t∗ is the symplectic quotient by the action

of diagonal matrices at µ ∈ t∗. The symplectic quotient consists of all Hermitian

matrices with spectrum λ = (λ1, λ2, ..., λn) and diagonal entries µ = (µ1, µ2, ..., µn).

We call this symplectic quotient Oλ//T (µ) a weight variety.

If λ = (λ1, λ2, ..., λn) has the property that all entries have distinct values, then

Oλ is a generic coadjoint orbit of SU(n). It is symplectomorphic to a complete

flag variety in Cn. In this section, we mainly deal with the generic case unless

10



otherwise stated. For more about the properties of weight varieties, see [Kn]. For

the Weyl element action of any γ ∈ W on λ ∈ t∗, we are going to use the notation

λγ = (λγ−1(1), ..., λγ−1(n)) for our notational convenience in our proof.

1.4.2 Divided difference operators and double Grothendieck

polynomials

Let f be a polynomial in n variables, call them x1, x2, ..., xn (and possibly some

other variables), the divided difference operator ∂i is defined as

∂if(..., xi, xi+1, ...) =
f(..., xi, xi+1, ...)− f(...xi+1, xi, ...)

xi − xi+1

The isobaric divided difference operator is

πi(f) = ∂i(xif) =
xif(..., xi, xi+1, ...)− xi+1f(..., xi+1, xi, ...)

xi − xi+1

The top Grothendieck polynomial is

Gid(x, y) =
∏
i<j

(1− yj
xi

)

Note that the isobaric divided difference operator acts on Gid naturally by πi(Gid).

And πi(P.Q) = πi(P )Q provided that Q is a symmetric polynomial in x1, x2, ...xn.

So this operator preserves the ideal generated by all differences of elementary

symmetric polynomials ei(x1, ..., xn) − ei(y1, ..., yn) for all i = 1, ..., n, denote this

ideal by I. That is, the operator πi acts on the ring R defined by

R =
Z[x±1

1 , ..., x±1
n , y±1

1 , ..., y±1
n ]

I

For any element ω ∈ Sn, ω has reduced word expression ω = si1si2 ...sil (where

each sij is a transposition between ij, ij+1). We can define the corresponding

11



operator:

πsi1si2 ...sil = πsi1 ...πsil

which is independent of the choice of the reduced word expression.

For any µ ∈ Sn, the double Grothendieck polynomial Gµ is:

πµ−1Gid = Gµ

Define the permuted double Grothendieck polynomials Gγ
ω by

Gγ
ω(x, y) = Gγ−1ω(x, yγ) = πω−1γGid(x, yγ)

where yγ means the permutation of the y1, ..., yn variables by γ.

Example 8 For G = SU(3),W = S3, we have

Gid = (1− y2

x1

)(1− y3

x1

)(1− y3

x2

)

G
(12)
(23) = π(23)(12)Gid(x, y(12))

= π(23)(12)

(
1− y3

x1

)(
1− y1

x1

)(
1− y3

x2

)

= π(23)

x1

(
1− y3

x1

)(
1− y1

x1

)(
1− y3

x2

)
− x2

(
1− y3

x2

)(
1− y1

x2

)(
1− y3

x2

)
x1 − x2


= π(23)

(
1− y3

x1

)(
1− y3

x2

)
=

(
1− y3

x1

)

1.4.3 T -equivariant K-theory of flag varieties

We have the following formula for K∗T (SU(n)/T ) (see [F]):

K∗T (SU(n)/T ) ∼= R(T )⊗R(G) R(T ) ∼= R(T )⊗Z R(T )/J
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where R(G) ∼= R(T )W and R(T ) are the character rings of G, T where G = SU(n)

respectively. J ⊂ R(T ) ⊗Z R(T ) is the ideal generated by a ⊗ 1 − 1 ⊗ a for all

elements a ∈ R(T )W . R(T )W is the Weyl group invariant of R(T ).

R(T ) can be written as a polynomial ring:

R(T ) = K∗T (pt) ∼= Z[a±1
1 , ..., a±1

n−1]

In the equation K∗T (X) = R(T ) ⊗Z R(T )/J , denote the first copy of R(T ) by

Z[y±1
1 , ..., y±1

n−1] and the second copy of R(T ) by Z[x±1
1 , ..., x±1

n−1]. Then the ideal J

is generated by ei(y1, ..., yn−1)− ei(x1, ..., xn−1), i = 1, ..., n− 1, where ei is the i-th

symmetric polynomial in the corresponding variables. Equivalently,

K∗T (Fl(Cn)) ∼=
Z[y±1

1 , ..., y±1
n , x1, ..., xn]

(J, (
∏n

i=1 yi)− 1)
(1.2)

Notice that x−1
i , i = 1, ..., n can be generated by some elements in the ideal J ,

where J is the ideal generated by ei(y1, ..., yn)− ei(x1, ..., xn), for all i = 1, ..., n.

Let GC be the complexification of a compact Lie group G, B ⊂ GC be a Borel

subgroup. In our case, G = SU(n), GC = SL(n,C). Then G/T ≈ GC/B. GC/B

consists of even-real-dimensional Schubert cells, Cω indexed by the elements in the

Weyl Group W . That is,

Cω = B−ωB/B, ω ∈ W

The closures of these cells are called Schubert varieties :

Xω = B−ωB/B, ω ∈ W

For each Schubert variety Xω, ω ∈ W , denote the T -equivariant structure sheaf on

Xω ⊂ GC/B by [OXω ]. It extends to the whole of GC/B by defining it to be zero

in the complement of Xω. Since [OXω ] is a T -equivariant coherent sheaf on GC/B,

13



it determines a class in K0(T,GC/B), the Grothendieck group constructed from

the semigroup whose elements are the isomorphism classes of T -equivariant locally

free sheaves. The elements [OXω ]ω∈W form a R(T )-basis for the R(T )-module

K0(T,GC/B). Since there is a canonical isomorphism between K0(T,GC/B) and

KT (GC/B) = KT (G/T ) (see [KK]), by abuse of notation we also denote [OXω ]ω∈W

as a linear basis in K∗T (G/T ) over R(T ).

On the other hand, the double Grothendieck polynomials Gω, ω ∈ W , as Lau-

rent polynomials in variables xi, yi, i = 1, 2, ..., n form a basis of KT×B(pt) ∼=

R(T )⊗Z R(T ) over KT (pt) ∼= R(T ). By the equivariant homotopy principle,

KT×B(pt) = KT×B(Mn×n)

where Mn×n denote the set of all n × n matrices over C. By a theorem of

[KM], we are able to identify the classes generated by matrix Schubert varieties

in KT×B(Mn×n) (matrix Schubert varieties form a cell decomposition of Mn×n/B)

with the double Grothendieck polynomials in KT×B(pt). The open embedding

ι : GL(n,C)→Mn×n induces a map in equivariant K-theory:

ι∗ : KT×B(Mn×n)→ KT×B(GL(n,C)) = KT (GL(n,C)/B) = KT (SU(n)/T )

Under this map, the classes generated by the matrix Schubert varieties in

KT×B(Mn×n) are mapped to the classes, [OXω ] ∈ KT (SU(n)/T ), of the cor-

responding Schubert varieties in SU(n)/T . By identifications of the double

Grothendieck polynomials in KT×B(pt) and the classes generated by the matrix

Schubert varieties in KT×B(Mn×n), the map ι∗ sends the double Grothendieck

polynomials to the T -equivariant structure sheaves [OXω ]ω∈W , as a R(T )-basis in

KT (G/T ) ∼= R(T ) ⊗R(G) R(T ). For more results about the geometry and com-

binatorics of double Grothendieck polynomials and matrix Schubert varieties, see

[KM].
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By abuse of notations, from now on, we will take the double Grothendieck poly-

nomials Gω(x, y), ω ∈ W as a basis in K∗T (SU(n)/T ) over R(T ). Under our nota-

tions, notice that the top double Grothendieck polynomial Gid(x, y) corresponds

to the T -equivariant structure sheaf [OXω0 ], where ω0 ∈ W is the permutation with

the longest length, i.e. ω0 = snsn−1...s3s2s1.

For more about K-theory and T -equivariant K-theory of flag varieties, for

example, see [F] and [KK].

1.4.4 Restriction of T -equivariant K-theory of flag varieties

to the fixed-point sets

Recall that the flag variety is compact, by [HL2], we have the Kirwan injectivity

map, i.e. the map

ι∗ : K∗T (Fl(Cn))→ K∗T (Fl(Cn)T )

induced by the inclusion ι from Fl(Cn)T to Fl(C) is injective. We compute the

restriction explicitly here. Notice that Fl(Cn)T is indexed by the elements in the

Weyl group W = Sn. The T -action on Cn splits into a sum of 1-dimensional vector

spaces, call them l1, ..., ln. The fixed points of T -action are the flags which can be

written as:

pω = 〈lω(1)〉 ⊂ 〈lω(1), lω(2)〉 ⊂ 〈lω(1), lω(2), lω(3)〉 ⊂ ... ⊂ 〈lω(1), ..., lω(n)〉 = Cn

where ω ∈ W and call

pid = 〈l1〉 ⊂ 〈l1, l2〉 ⊂ 〈l1, l2, l3〉 ⊂ ... ⊂ 〈l1, ..., ln〉 = Cn

the base flag of Cn. The description of the restriction map is as follow:
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Theorem 9 Let pω be a fixed point in Fl(Cn)T as above. The inclusion ιω : pω →

Fl(Cn) induces a restriction

ι∗ω : K∗T (Fl(Cn))→ K∗T (pω) = R(T ) = Z[y±1
1 , ..., y±1

n ]

such that ι∗ω : y±1
i → y±1

i , ι∗ω : xi → yω(i), i = 1, ..., n. Also, the inclusion map

ι : Fl(Cn)T → Fl(Cn) induces a map

ι∗ : K∗T (Fl(Cn))→ K∗T (Fl(Cn)T ) = ⊕pω ,ω∈WZ[y±1
1 , ..., y±1

n ]

whose further restriction to each component in the direct sum is just the map ι∗ω.

Proof. Consider K∗T (Fl(Cn)) as a module over K∗T (pt) = Z[y±1
1 , ..., y±1

n ], the map

K∗T (Fl(Cn))→ K∗T (p)

induced by mapping any point p into Fl(Cn) is a surjective R(T )-module homo-

morphism and K∗T (Fl(Cn)) has a linear basis over K∗T (p) = R(T ) = Z[y±1
1 , ..., y±1

n ].

Hence we must have ι∗ω : y±1
i → y±1

i , i = 1, ..., n, for all ω ∈ W . To find the image of

xi under ι∗ω, first, notice that in K∗T (pt), yi = [pt×Ci]. Ci corresponds to the action

of T = S1× ...× S1 on the i-th copy of Cn = C× ...×C with weight 1 and acting

trivally on all the other copies of C. More generally, yω(i) = [pt×Cω(i)]. In K∗T (pω),

yω(i) = [pω×Cω(i)], where pω×Cω(i) is the T -line bundle over the point pω. By the

Hodgkin’s result (see [Ho]), K∗T (G/T ) = R(T )⊗R(G)K
∗
G(G/T )(∼= R(T )⊗R(G)R(T )).

Following our use of notations in 1.4.3, xi comes from the second copy of R(T )

(which is isomorphic to K∗G(G/T ) under our identification). Hence, each xi is the

class represented by the G-line bundle G ×T Ci over G/T . T acts on G × Ci di-

agonally and G ×T Ci is the orbit space of the T -action. In particular, xi is a

T -line bundle over G/T by restriction of G-action to T -action. So, ι∗ω(xi) is just

the pullback T -line bundle of the map ιω : pω → Fl(Cn). For i = 1, we have

ι∗ω(x1) = [pω × Cω(1)] = yω(1). Similarly, ι∗ω(xi) = yω(i) for i = 2, ..., n. And hence

the result.
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1.4.5 Relations between double Grothendieck polynomials

and the Bruhat Ordering

Recall our definition of the permuted double Grothendieck polynomials Gγ
ω in

Section 1.4.2:

Gγ
ω(x, y) = Gγ−1ω(x, yγ) = πω−1γGid(x, yγ)

where yγ indicates the permutation of the y1, ..., yn variables by γ. For γ ∈ W ,

define the permuted Bruhat ordering by

v ≤γ ω ⇔ γ−1v ≤ γ−1ω

Notice that the permuted Bruhat ordering is related to the Schubert varieties

in the following way: Each of the T -fixed points of a Schubert variety Xω sits in

one Schubert cell Cv (the interior of a Schubert variety) for v ≤ ω. So the T -fixed

point set can be identified as:

(Xω)T = {v | v ≤ ω}

For a fixed γ ∈ W , we can define the permuted Schubert varieties by

Xγ
ω = γB−γ−1ωB/B

for any ω ∈ W . Then the T -fixed point set of Xγ
ω are

(Xγ
ω)T = {v | v ≤γ ω}

Notice that {Xγ
ω}ω∈W also form a cell decomposition of GC/B ≈ G/T .

Define the support of the permuted double Grothendieck polynomials by

Supp(Gγ
ω) = {z ∈ W | Gγ

ω|z 6= 0}
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Here we consider Gγ
ω as an element in K∗T (Fl(Cn)) (see Section 1.4.3). So Gγ

ω|z

is the image of Gγ
ω under the restriction of the Kirwan injective map at the point

z ∈ W . That is,

ι∗|z : K∗T (Fl(Cn))→ K∗T (pz)

Notice that the restriction rule follows Theorem 9. That is,

Gγ
ω(x, y)|z = Gγ

ω(x1, x2, ..., xn, y1, ..., yn)|z = Gω(yz(1), yz(2), ..., yz(n), y1, ..., yn)

Example 10 Using the same notations as in the example in 1.4.2, G
(12)
(23) = (1 −

y3
x1

) ∈ K∗T (Fl(C3)). There are six fixed points for each element in S3,

G
(12)
(23)|(23) 6= 0, G

(12)
(23)|(123) 6= 0, G

(12)
(23)|(13) = 0

G
(12)
(23)|(132) = 0, G

(12)
(23)|(12) 6= 0, G

(12)
(23)|id 6= 0

So the support of a permuted double Grothendieck polynomial contains

id, (12), (23), (123). On the other hand,

(X
(12)
(23) )T = {v ∈ S3 | (12)v ≤ (12)(23) = (123)}

= {v ∈ S3 | (12)v ≤ id, (12), (23) or (123)}

= {v ∈ S3 | v ≤ (12), id, (123) or (23)}

which is the same as Supp(G
(12)
(23)).

Now we show a fundamental relation between the permuted double

Grothendieck polynomials and the permuted Bruhat Orderings:

Theorem 11 The support of a permuted double Grothendieck polynomial Gγ
ω is

{v | v ≤γ ω}
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Proof. We need to show Supp(Gω) = (Xω)T first. We do it by induction on the

length of v ∈ W , l(v), which stands for the minimum number of transpositions in

all the possible choices of word expressions of v.

For ω = id, Gid is just the top Grothendieck polynomial. It is non-zero only at

the identity and zero at all the other elements. Assume the inductive hypothesis

that Supp(Gω) = (Xω)T for all l(ω) ≤ l − 1. Consider v ∈ W, l(v) = l, write

v = si1si2 ...sil where each sij is a transposition of elements ij, ij + 1, let ω = vsil =

si1 ...sil−1
, so l(ω) = l − 1 and

Gv|z = πv−1G|z = πilπil−1
...πi1G|z = πilGω|z

=
xilGω(x, y)− xil+1Gω(xsil , y)

xil − xil+1

|z

=
yz(il)Gω(yz, y)− yz(il+1)Gω(yzsil , y)

yz(il) − yz(il+1)

(1.3)

First, to prove that Supp(Gv) ⊂ (Xv)
T , suppose that z 6∈ (Xv)

T , then z 6∈ (Xω)T

since ω ≤ v. Since l(ω) = l − 1, we have z 6∈ Supp(Gω). That is Gω(yz, y) = 0.

Hence,

Gv|z =
−yz(il+1)Gω(yzsil , y)

yz(il) − yz(il+1)

We claim that it is zero. If it were not zero, then Gω(yzsil , y) = Gω(x, y)|zsil 6= 0.

Equivalently, zsil ∈ Supp(Gω) = (Xω)T . If z < zsil , then z ∈ (Xω)T which

contradicts z 6∈ Supp(Gω) shown before. If z > zsil , then sil increases the length

of zsil . Then zsil ∈ (Xω)T implies that z ∈ (Xv)
T which contradicts z 6∈ (Xv)

T .

So the claim is proved. i.e. z /∈ (Xv)
T ⇒ Gv|z = 0⇔ z 6∈ Supp(Gv).

Second, we need to prove that (Xv)
T ⊂ Supp(Gv). Suppose that z 6∈ Supp(Gv),

i.e. Gv|z = 0. Assume that z ∈ (Xv)
T . From (1.3),

yz(il)Gω(yz, y) = yz(il+1)Gω(yzsil , y) (1.4)

Now there are two cases, z = v and z 6= v. We consider these two cases separately.
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If z = v, then z 6≤ w (since l(ω) = l − 1 and l(z) = l(v) = l)⇔ z 6∈ (Xω)T =

Supp(Gω) ⇔ Gω|z = 0 ⇔ Gω(yz, y) = 0 ⇔ Gω(yzsil , y) = 0. The last equality is

by (1.4). So we now have Gω(x, y)|zsil = 0 ⇔ zsil 6∈ Supp(Gω) = (Xω)T . Since

zsil = vsil = ω ∈ (Xω)T , it’s a contradiction.

If z 6= v, then l(z) < l(v), then l(z) ≤ l−1. Let t ∈ W with l(t) = l−1 such that

z ≤ t. Although t may not be the same as ω but t = v′sij for some j ∈ 1, ..., l (v′

is another word expression for v) By our inductive hypothesis, Supp(Gt) = (Xt)
T ,

so

z ∈ Supp(Gt)⇔ Gt(yz, y) = Gt(x, y)|z 6= 0 (1.5)

But zsij 6≤ t implies that zsij 6∈ (Xt)
T = Supp(Gt). By (1.4), (but now we have ω

replaced by t), Gt(yzsij , y) = 0. By (1.3) and (1.5), we have Gv|z 6= 0 contradicting

our initial assumption that z /∈ Supp(Gv).

Hence, we have z 6∈ Supp(Gv)⇒ z 6∈ (Xv)
T . The induction step is done.

Then we need to show that the statement holds for the permuted double

Grothendieck polynomials, i.e. Supp(Gγ
ω) = (Xγ

ω)T . By definition, Gγ
ω(x, y) =

Gγ−1ω(x, yγ), so,

SuppGγ−1ω(x, y) = (Xγ−1ω)T = {v ∈ W | v ≤ γ−1ω}

By permuting the y’s variables by γ, we obtain

Supp(Gγ
ω) = SuppGγ−1ω(x, yγ)

= {γv ∈ W | v ≤ γ−1ω}

= {v ∈ W | γ−1v ≤ γ−1ω}

= {(Xγ
ω)T}
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1.4.6 Main theorem

In this subsection, we prove the following result:

Theorem 12 Let Oλ be a generic coadjoint orbit of SU(n). Then

K∗(Oλ//T (µ)) ∼=
Z[x1, ..., xn, y

±1
1 ]

(I, ((
∏n

i=1 yi)− 1), πvG(x, yr))

for all v, r ∈ Sn such that
∑n

i=k+1 λv(i) <
∑n

i=k+1 µr(i) for some k = 1, ..., n− 1. I

is the difference between ei(x1, ..., xn)− ei(y1, ..., yn) for all i = 1, ..., n, where ei is

the i-th elementary symmetric polynomial.

It is a K-theoretic analogue of the main result in [G1].

To make the symplectic picture more explicit, we denote M = Oλ ≈ SU(n)/T

to be the generic coadjoint orbit. So we have K∗T (M) = K∗T (Oλ) = K∗T (Fl(Cn)).

For λ ∈ t∗, λ = (λ1, ..., λn), assume that λ1 > λ2 > ... > λn, and λ1 + ...+ λn = 0.

Since M = Oλ is compact, MT has only a finite number of points. The kernel of

the Kirwan map κ is generated by a finite number of components, see Theorem

7 and [HL2]. More specifically, let Mµ
ξ ⊂ M, ξ ∈ t be the set of points where

the image under the moment map φ lies to one side of the hyperplane ξ⊥ through

µ = (µ1, ..., µn) ∈ t∗, i.e.

Mµ
ξ = {m ∈M | 〈ξ, φ(m)〉 ≤ 〈ξ, µ〉}

Then the kernel of κ is generated by

Kξ = {α ∈ K∗T (M) | Supp(α) ⊂Mµ
ξ }

That is,

ker(κ) =
∑
ξ∈t

Kξ
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Now, we are going to compute the kernel explicitly. Our proof is similar to the

results in [G1]. In [G1], Goldin proved a very similar result in rational cohomology

by using the permuted double Schubert polynomials as a linear basis of H∗T (M)

over H∗T (pt). In K-theory, the permuted double Grothendieck polynomials are

used as a linear basis of K∗T (M) over K∗T (pt) ∼= R(T ). The following lemma will

be used in our proof of Theorem 12:

Lemma 13 Let Oλ be a generic coadjoint orbit of SU(n) through λ ∈ t∗. Let

α ∈ K∗T (Oλ) be a class with Supp(α) ⊂ (Oλ)µξ . Then there exists some γ ∈ W such

that if α is decomposed in the R(T )-basis {Gγ
ω}ω∈W as

α =
∑
ω∈W

aγωG
γ
ω

where aγω ∈ R(T ), then aγω 6= 0 implies Supp(Gγ
ω) ⊂ (Oλ)µξ . Indeed, γ can be chosen

such that ξ attains its minimum at φ(λγ), where λγ = (λγ−1(1), ..., λγ−1(n)) ∈ t∗.

Proof. The proof is essentially the same as Theorem 3.1 in [G1].

Proof of Theorem 12. : Let ei be the coordinate functions on t∗. That is, for

λ = (λ1, λ2, ..., λn) ∈ t∗, ei(λ) = λi. For γ ∈ Sn, define ηγkby

ηγk =
n∑

i=k+1

eγ(i)

We compute Mµ
ηγk

explicitly:

Mµ
ηγk

= {m ∈M | 〈ηγk , φ(m)〉 ≤ 〈ηγk , µ〉}

= {m ∈M | ηγk(φ(m)) ≤ ηγk(µ)}

= {m ∈M | ηγk(φ(m)) ≤
∑n

i=k+1
µγ(i)}
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For any ω ∈ W ,

ηγk(λω) =
n∑

i=k+1

eγ(i)(λω) =
n∑

i=k+1

eγ(i)(λω−1(1), ..., λω−1(n))

=
n∑

i=k+1

λω−1γ(i)

Notice that ηγk attains minimum at λγ (due to our assumption that λ1 ≥ λ2 ≥ ... ≥

λn) and respects the permuted Bruhat ordering, i.e.

ηγk(λv) ≤ ηγk(λω)

if v ≤γ ω. By restriction to the domain Supp(Gγ
ω) = (Xγ

ω)T = {v ∈ W | v ≤γ

w} = {v ∈ W | γ−1v ≤ γ−1ω}, ηγk attains its maximum at λω and minimum at λγ.

If ηγk(λω) =
∑n

i=k+1 λω−1γ(i) <
∑n

i=k+1 µγ(i), then for v ∈ (Xγ
ω)T ,

ηγk(λv) =
n∑

i=k+1

λv−1γ(i) ≤
n∑

i=k+1

λω−1γ(i) <
n∑

i=k+1

µγ(i)

and hence

Supp(Gγ
ω) = (Xγ

ω)T = {v ∈ W | γ−1v ≤ γ−1ω} ⊂Mµ
ηγk

Since Gγ
ω(x, y) = πω−1γG(x, yγ), we have πvG(x, yγ) ∈ ker(κ) if

∑n
i=k+1 λv(i) <∑n

i=k+1 µγ(i).

For the other direction, we need to show that the classes πvG(x, yγ) with v, γ ∈

W having the property that
∑n

i=k+1 λv(i) <
∑n

i=k+1 µγ(i) for some k ∈ {1, ..., n−1}

actually generate the whole kernel. Let α ∈ K∗T (M) be a class in ker(κ), so

Supp(α) ⊂ Mµ
ξ for some ξ ∈ t. We take γ ∈ W such that ξ(λγ) attains its

minimum. Decompose α over the R(T )-basis {Gγ
ω}ω∈W ,

α =
∑
ω∈W

aγωG
γ
ω
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where aγω ∈ R(T ). By Lemma 13, we need to show that Supp(Gγ
ω) ⊂ Mµ

ηγk
for

some k. Since ηγk is preserved by the permuted Bruhat ordering and attains its

maximum at λω in the domain Supp(Gγ
ω), we just need to show that

ηγk(λω) < ηγk(µ) (1.6)

for some k. It is actually purely computational: Suppose (1.6) does not hold for

all k. We have

λω−1γ(n) ≥ µγ(n)

...

λω−1γ(2) + ...+ λω−1γ(n) ≥ µγ(2) + ...+ µγ(n)

For ξ =
∑n

i=1 biei, b1, ..., bn ∈ R (recall that ξ attains its minmum at λγ by our

choice of γ ∈ W ), we have ξ(λγ) ≤ ξ(λsiγ) where si is a transposition of i and i+1.

And hence

biλγ−1(i) + bi+1λγ−1(i+1) ≤ biλγ−1(i+1) + bi+1λγ−1(i)

By our assumption that λi > λi+1, we get bγ(i) ≤ bγ(i+1). And hence bγ(1) ≤ bγ(2) ≤

... ≤ bγ(n). Then,

(bγ(n) − bγ(n−1))λω−1γ(n) ≥ (bγ(n) − bγ(n−1))µγ(n)

(bγ(n−1) − bγ(n−2))(λω−1γ(n−1) + λω−1γ(n)) ≥ (bγ(n−1) − bγ(n−2))(µγ(n−1) + µγ(n))

...

(bγ(2) − bγ(1))(λω−1γ(2) + ...+ λω−1γ(n)) ≥ (bγ(2) − bγ(1))(µγ(2) + ...+ µγ(n))
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Using
∑n

i=1 λi = 0 =
∑n

i=1 µi and summing up all the above inequalities to get

n∑
i=1

bγ(i)λω−1γ(i) ≥
n∑
i=1

biµi

⇔
n∑
i=1

biλω−1(i) ≥
n∑
i=1

biµi

⇔ ξ(λω) ≥ ξ(µ)

the last inequality contradicts Supp(α) ⊂ Mµ
ξ since λω has the property that

ω ∈ Supp(α). So (1.6) is true.

So the kernel ker(κ) is generated by the set πvG(x, yγ) for v, γ ∈ W satisfying∑n
i=k+1 λv(i) <

∑n
i=k+1 µγ(i) for some k = 1, ..., n− 1. By (1.2) and the surjectivity

of the Kirwan map κ,

κ : K∗T (SU(n)/T ) = K∗T (Oλ)→ K∗T (φ−1(µ)) ∼= K∗(Oλ//T (µ))

It implies that

K∗(Oλ//T (µ)) = K∗T (Oλ)/ ker(κ)

With ker(κ) explicitly computed and by (1.2), Theorem 12 is proved.

1.5 K-theory of symplectic reduction of generic coadjoint

orbits

The goal of this section is to generalize the results in 1.4 to the K-theory of

symplectic reduction of generic coadjoint orbits.

For a compact, connected and simply connected Lie group G, we consider the

coadjoint orbit Oλ of G through a point λ ∈ t∗, where t∗ is the dual of Lie algebra

of the maximal torus T ⊂ G. Oλ is diffeomorphic to the flag variety G/T . Oλ is
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a symplectic manifold with a symplectic form ω known as the Kirillow-Kostant-

Souriau form. The torus T acts on Oλ by left multiplication on the coset gT . The

T -action on Oλ is Hamiltonian. Hence, there is a moment map

φ : Oλ → t∗

The image of the moment map φ is the convex hull of W.λ, a Weyl group orbit

of λ. We assume that λ sits in the fundamental chamber in t∗. For a regular value

µ ∈ φ(Oλ), we have the symplectic reduction at µ:

φ−1(µ)/T = Oλ//T (µ)

By Corollary 6, we have the Kirwan surjective map:

κ : K∗T (Oλ)→ K∗T (φ−1(µ))

For the T -equivariant K-theory of Oλ ∼= G/T , we have the following formula

for K∗T (G/T ), see [KK]:

K∗T (G/T ) ∼= R(T )⊗R(G) R(T )

The inclusion iT from (G/T )T to G/T induces a map

i∗T : KT (G/T )→ KT ((G/T )T ) ∼= F (W,R(T ))

where F (W,R(T )) is the set of functions from the Weyl group W to R(T ). It is

shown in [KK] that i∗T is injective and the image i∗T (KT (G/T )) is isomorphic to a

R(T )-subalgebra in F (W,R(T )), in which a R(T )-basis {φω}ω∈W exists. By pulling

this R(T )-basis back through i∗T , we obtain a R(T )-basis of KT (G/T ), denote each

element in this basis by xω = (i∗T )−1(φω) for all ω ∈ W . For the details of the proof

and the construction of the basis {φω}ω∈W in F (W,R(T )), see [KK].
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Define the support of of any class α ∈ K∗T (Oλ) = K∗T (G/T ) by

Supp(α) = {vλ : i∗T (α)(v) 6= 0}

In particular, it is shown in [KK] that

Supp(xω) = {vλ : ω ≤ v}

where the elements ω, v ∈ W are ordered by the Bruhat order. Fix γ ∈ W and for

all ω ∈ W , define φγω by

φγω := γ.φγ−1ω

where the action of γ ∈ W on φγ−1ω is defined by

γ.φγ−1ω(v) = φγ−1ω(γ−1v)

Define

xγω := (i∗T )−1(φγω)

It is quite obvious that

Supp(xγω) = {vλ : γ−1ω ≤ γ−1v}

and {xγω}ω∈W form a R(T )-basis of KT (G/T ) = KT (Oλ).

For ξ ∈ t, define fξ(x) on Oλ = G/T by

fξ(x) := 〈ξ, φ(x)〉

It is well-known that fξ is a Morse-Bott function.

Let λ1, ..., λl ∈ t∗ be the fundamental weights associated to the positive Weyl

chamber of t∗. Denote the Weyl chamber explicitly by

C = {a1λ1 + a2λ2 + ...+ alλl | ai > 0, i = 1, 2, , , l}
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Denote the closure by C. We have the following lemma on the behaviour of the

Morse-Bott function fξ in terms of the fixed-point set W.λ = {ωλ | ω ∈ W} in t∗,

see [GM].

Lemma 14 (Goldin and Mare) Let γ ∈ W and ξ ∈ γC. If γ−1v ≤ γ−1ω, then

fξ(vλ) ≤ fξ(ωλ).

Lemma 15 Suppose that x ∈ K∗T (Oλ) has the property that

φ(Supp(x)) ⊂ {y ∈ t∗ | 〈ξ, µ〉 ≤ 〈ξ, y〉}

When x is decomposed in the basis R(T )-basis {xγω}ω∈W as

x =
∑
ω∈W

aγωx
γ
ω

where aγω ∈ K∗T (pt) ∼= R(T ), such that if aγω 6= 0 then

φ(Supp(xγω)) ⊂ {y ∈ t∗ | 〈ξ, µ〉 ≤ 〈ξ, y〉}

Proof. Suppose ξ ∈ γC, we look at the decomposition of x in the R(T )-basis

{xγω}ω∈W . Let

W ′ = {ω ∈ W | 〈ξ, µ〉 ≤ 〈ξ, ωλ〉}

Then write

x =
∑
ω∈W

aγωx
γ
ω =

∑
ω∈W ′

aγωx
γ
ω + aγv1x

γ
v1

+ ...+ aγvnx
γ
vn

For all vi, i = 1, 2, ..., n,

〈ξ, vi〉 < 〈ξ, µ〉

and

aγvi 6= 0
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We can rearrange vi such that v1 has the property that there exists no j > 1 such

that γ−1vj < γ−1v1. Since 〈ξ, v1λ〉 < 〈ξ, µ〉 ≤ 〈ξ, ωλ〉 for ω ∈ W ′ and by Lemma

14, we know that v1λ /∈ Supp(xγω) for ω ∈ W ′. Hence, we have

i∗T (xγω)(v1) = 0

for ω ∈ W ′. Similarly,

i∗T (xγvj)(v1) = 0

since γ−1vj � γ−1v1. Hence,

i∗T (
∑
ω∈W ′

aγωx
γ
ω + aγv1x

γ
v1

+ ...+ aγvnx
γ
vn)(v1) = aγv1 6= 0

So it means that i∗T (x)(v1) 6= 0. That is, v1λ ∈ Supp(x). But 〈ξ, v1λ〉 < 〈ξ, µ〉.

Contradiction.

Now we can state our main theorem:

Theorem 16 Let Oλ ∼= G/T be a generic coadjoint orbit of a compact, con-

nected, simply-connected Lie group G. K∗T (φ−1(µ)) is isomorphic to the quotient

of K∗T (G/T ) by the ideal generated by

{xγv | there exists j such that 〈λj, γ−1µ〉 ≤ 〈λj, γ−1vλ〉}

Proof. Suppose v, γ ∈ W have the property that

〈λj, γ−1µ〉 ≤ 〈λj, γ−1vλ〉

for some 1 ≤ j ≤ l. Let ξ = γλj ∈ γC, if ωλ ∈ Supp(xγv), then γ−1v ≤ γ−1ω. By

lemma 14, we have

〈ξ, µ〉 ≤ 〈ξ, vλ〉 ≤ 〈ξ, ωλ〉
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Hence, xγv ∈ ker(κ), where κ is the Kirwan map

κ : K∗T (Oλ)→ K∗T (φ−1(µ))

For another direction of the proof, let us consider a class x ∈ K∗T (Oλ) sitting in

ker(κ). Equivalently, x has the property

Supp(x) ⊂ {y ∈ t∗ | 〈ξ, µ〉 ≤ 〈ξ, y〉}

for some ξ ∈ t∗. Suppose γ ∈ W has the property that ξ ∈ γC, x can be

decomposed over the R(T )-basis {xγω}ω∈W :

x =
∑
ω∈W

aγωx
γ
ω

By lemma 15, if aγω 6= 0, then

〈ξ, µ〉 ≤ 〈ξ, ωλ〉

We can write ξ ∈ t∗ as

ξ = γ

l∑
j=1

ajλj

where aj ≥ 0 for all j. These two equations imply that we must have

〈γλj, µ〉 ≤ 〈γλj, ωλ〉

for some j ∈ {1, 2, ..., l}. It means that any class x ∈ ker(κ) ⊂ K∗T (Oλ) is generated

by some classes xγω described in theorem 16.

Remark 17 This result is very similar to [GM], where the rational cohomology

H∗(Oλ//T (µ)) is computed. Our result is slightly different since our T -equivariant

K-theory K∗T (Oλ) is over Z, instead of Q. Hence, due to the possible presence of

torsion elements, K∗T (φ−1(µ)) may not be isomorphic to K∗(Oλ//T (µ)). This

isomorphism holds when G = SU(n), or at the very regular value µ of the moment

map for any flag variety G/T where G is a compact connected Lie group, see [Sj].
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CHAPTER 2

DIVIDED DIFFERENCE OPERATORS ON KASPAROV’S

EQUIVARIANT KK-THEORY

2.1 Introduction

Let G be a compact connected Lie group, T be a maximal torus of G and X

be a compact G-space. In [A], Atiyah showed that K∗G(X) is a direct summand

of K∗T (X). The restriction map from the G-equivariant K-ring K∗G(X) to the

T -equivariant K-ring K∗T (X) has a natural left inverse. This pushforward ho-

momorphism is defined by means of the Dolbeault operator associated with an

invariant complex structure on the homogeneous space G/T . In [HLS], Harada,

Landweber and Sjamaar showed that the action of the Weyl group W on K∗T (X)

extends to an action of a Hecke ring D generated by divided difference operators,

which was first introduced in the context of Schubert calculus by Demazure [D3].

The ring D contains an augmentation left ideal I(D) and they showed that K∗G(X)

is isomorphic to the subring of K∗T (X) annihilated by I(D).

This chapter can be seen as a natural generalization of these results from

equivariant K-theory to equivariant KK-theory introduced by Kasparov [K1],

[K2]. First, we extend the action of the ring D to the Kasparov’s T -equivariant

KK-group KKT (A,B) where A and B are G-C∗-algebras. Next, we show that

KKG(A,B) is isomorphic to KKT (A,B) annihilated by I(D). The key results of

this paper rely on theorems due to Wasserman [W]. Since it is unpublished, I will

prove Wasserman’s Theorems in Section 2.6 and 2.7.
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2.2 The definition and properties of KK-theory

Kasparov’s KK-theory is a bivariant functor that assigns an abelian group

KK(A,B) to the C∗-algebras A and B. The abelian group KK(A,B) is con-

travariant in A and covariant in B. If G is a group acting on A and B in a reason-

ably nice way, then we also have the equivariant KK-theory group KKG(A,B).

As in the case of K-theory, KK-theory has an even and an odd part, we will only

deal with the even part in this thesis.

The construction of KK-theory was motivated by index theory, and in particu-

lar by a desire to find generalizations and more elegant proofs of the Atiyah-Singer

Index Theorem. The definition of KK-theory is fairly technical. This section may

serve as a rapid introduction to the basic properties of KK-theory. More informa-

tion in KK-theory can be found in Kasparov’s original papers [K1], [K2], see also

[B] and [JT].

Definition 18 A C∗-algebra is a complex Banach space (A, ||.||) equipped with

an associative bilinear product (a, b) 7→ ab and an anti-linear map a 7→ a∗ of order

2, such that for all a, b ∈ A, we have the following properties:

(ab)∗ = b∗a∗

||ab|| ≤ ||a||||b||

||aa∗|| = ||a||2

A ∗-homomorphism of C∗-algebras is a homomorphism of algebras that inter-

twines the star operations. These homomorphisms are automatically bounded.

It follows from the definition of C∗-algebra that ||a∗|| = ||a|| for all a in a
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C∗-algebra.

Example 19 Let X be a locally compact Hausdorff space. A complex-valued

function f on X is said to vanish at infinity if for all ε > 0 there is a compact

subset C ⊂ X such that for all x ∈ X−C, we have |f(x)| < ε. The vector space of

continuous functions on X vanishing at infinity is denoted by C0(X). The norm on

this space is the supremum norm. The multiplication of two functions is defined by

point-wise multiplication. The anti-linear map is defined by f ∗(x) := f(x). Then

C0(X) is a commutative C∗-algebra. Note that if X is compact, then all functions

on X vanish at infinity. In this case, we use the notation C(X) to stand for the

set of all continuous functions on X.

In fact, every commutative C∗-algebra is isomorphic to the C∗-algebra of con-

tinuous functions that vanish at infinity on a locally compact Hausdorff space, by

Gelfand-Naimark Theorem.

In this thesis, all C∗-algebras are assumed to be separable. This assumption is

necessary for the definition of Kasparov product in KK-theory. A commutative

C∗-algebra C0(X) is separable if X is metrisable. Because we usually work with

smooth manifolds, this assumption is not an important restriction.

Remark 20 Let A,B be C∗-algebras, we can form the algebraic tensor product

A ⊗ B with the ∗-map defined by (a ⊗ b)∗ = a∗ ⊗ b∗. It is easy to show that at

least one norm can be defined on A⊗B. In general, there may be more than one

way to define a C∗-norm on A⊗B. The minimal C∗-norm on A⊗B is called the

spatial norm. And by abuse of notations, we denote A ⊗ B the C∗-completion of

the algebraic tensor product of A and B under the spatial norm and call it spatial
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tensor product. All tensor products of C∗-algebras in this thesis are taken to be

the spatial tensor products. A is called a nuclear C∗-algebra if A⊗B admits only

one norm for any C∗-algebra B. The set of nuclear C∗-algebras forms an important

class of C∗-algebras and has been studied extensively by C∗-algebraists. For an

introductory course on this topic, see [Mu]. We will not make use of any technical

aspect of this theory in this thesis. But it is worth pointing out an important

theorem by Takesaki that every abelian C∗-algebra is nuclear, see Theorem 6.4.15

in [Mu].

Definition 21 Let A be a C∗-algebra. A Hilbert A-module is a complex vector

space E, equipped with the structure of a right A-module, and with an ‘A-valued

inner product’ 〈−,−〉 : E × E → A which is additive in both entries and has the

following properties for all e, f ∈ E, a ∈ A:

〈e, fa〉 = 〈e, f〉a

〈e, f〉 = 〈f, e〉∗

〈e, e〉 ≥ 0

and E is complete in the norm ||.|| defined by ||e||2 = ||〈e, e〉||A.

A homomorphism of Hilbert A-modules is a A-module map that preserves the

A-valued inner products. An isomorphism is a bijective homomorphism.

If A = C, then a Hilbert C-module is nothing more than a Hilbert space. So

Hilbert modules over C∗-algebras can be seen as a generalization of Hilbert spaces.

The motivating example of Hilbert A-modules that is used in this thesis is the

following.

Example 22 Let X be a locally compact Hausdorff space, and let E be a complex
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vector bundle over X, with a Hermitian structure 〈−,−〉. Let Γ0(E) be the space

of continuous sections s of E such that the function x 7→ 〈s(x), s(x)〉 vanishes at

infinity. Then Γ0(E) is a Hilbert C0(X)-module, whose module structure is given

by pointwise multiplication and with the C0(X)-valued inner product

〈s, t〉(x) := 〈s(x), t(x)〉E

for all s, t ∈ Γ0(X) and x ∈ X.

As an analogue to the tensor product of two Hilbert spaces, we can form a

tensor product in a similar way as follows.

Let E be a Hilbert B-module and F a Hilbert C-module. The algebraic tensor

product E ⊗C F is a right module over the algebraic tensor product B ⊗C C such

that (e⊗Cf)b⊗Cc = eb⊗Cfc for e ∈ E, f ∈ F, b ∈ B, c ∈ C. By considering B⊗CC

as a dense ∗-subalgebra of the spatial tensor product B⊗C, we can define a B⊗C-

valued ‘inner product’ on E ⊗C F as the map 〈−,−〉 : E ⊗C F ×E ⊗C F → B⊗C

by

〈e⊗C f, e1 ⊗C f1〉 = 〈e, e1〉 ⊗ 〈f, f1〉

Then E⊗C F is almost a pre-Hilbert B⊗C-module, the difference being that it is

only a right module over the dense ∗-subalgebra B⊗CC of B⊗C, not over B⊗C

itself. Then we consider the B⊗CC-submodule N = {x ∈ E⊗CF |〈x, x〉 = 0}. Take

the completion of E ⊗C F/N in the norm ||〈−,−〉|| 12 . It is a right B ⊗C C-module

and we have the inequality ||zb|| ≤ ||z||||b|| for all z ∈ E ⊗C F/N and b ∈ B ⊗C C.

Therefore we can extend the right B ⊗C C-module structure by continuity in two

steps to obtain a right B ⊗ C-module structure. We call such a construction

external tensor product of E and F , which turns a product of Hilbert B-module

and Hilbert C-module into a Hilbert B ⊗ C-module. By abuse of notations, we
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denote E⊗F the external tensor product of E and F . It is not to be confused with

the internal tensor product of E and F that will be defined and used extensively

a while later.

As an analogue to the algebras of bounded operators on a Hilbert space, we

have the following generalization to Hilbert C∗-modules.

Definition 23 Let A be a C∗-algebra, and let E be a Hilbert A-module. The

algebra B(E) of adjointable operators on E consists of the C-linear A-module map

T : E → E such that there is another C-linear A-module map T ∗ that satisfies

〈Ta, b〉 = 〈a, T ∗b〉

for all a, b ∈ E.

By definition, it is plain to show that all adjointable operators are bounded with

respect to the norm ||.||E. A simple argument by Riesz Representation Theorem

shows that every bounded linear operator on a Hilbert space is adjointable. But

in general, it is not true that every C-linear A-module map is adjointable for a

Hilbert A-module when A 6= C, see [Sk].

B(E) is a C∗-algebra in the operator norm, with the anti-linear map defined

by T 7→ T ∗.

Next, we will define the set of compact operators on Hilbert A-modules as an

analogue to the set of compact operators on Hilbert spaces.

Definition 24 The subalgebra F(E) ⊂ B(E) of finite rank operators on E is

algebraically generated by operators of the form

θe1,e2 : e3 7→ e1〈e2, e3〉
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for e1, e2, e3 ∈ E. The C∗-algebra K(E) of compact operators on E is the norm

closure of F(E) in B(E).

Note that, by the following computation:

〈θe1,e2(x), y〉 = 〈e1〈e2, x〉, y〉

= 〈y, e1〈e2, x〉〉∗

= (〈y, e1〉〈e2, x〉)∗

= 〈e2, x〉∗〈y, e1〉∗

= 〈x, e2〉〈e1, y〉

= 〈x, e2〈e1, y〉〉

= 〈x, θe2,e1(y)〉

We have θe1,e2 = θ∗e2,e1 ∈ F(E).

The basic building blocks of KK-theory are the Kasparov bimodules.

Definition 25 Let A,B be C∗-algebras. A Kasparov (A,B)-module is a triple

(E, φ, F ) such that

(i) E is a countably generated Hilbert B-module.

(ii) φ : A→ B(E) is ∗-homomorphism.

(iii) F ∈ B(E) is an adjointable operator such that for all a ∈ A, [F, φ(a)] ∈

K(E), (F − F ∗)φ(a) ∈ K(E) and (F 2 − 1)φ(a) ∈ K(E).

To define equivariant KK-theory, we need to use Z2-graded Kasparov modules

which are equipped with suitable actions by a group G. We always assume that G

is a locally compact Hausdorff group that is second countable.
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Definition 26 A Z2-graded Hilbert A-module is a Hilbert A-module E with a

decomposition E0⊕E1 such that ea ∈ Ek for all a ∈ A and e ∈ Ek where k = 0, 1.

Note that a Z2-grading on a Hilbert A-module E naturally induces Z2-gradings

on the C∗-algebras B(E) and F(E).

Definition 27 A C∗-algebra A is a G-C∗-algebra if G acts on A by ∗-

automorphism and the map g 7→ g.a is a continuous map. If A is a G-C∗-algebra,

then a G-Hilbert A-module is a Hilbert A-module equipped with a continuous left

action of G by bounded, invertible C-linear operators such that

(i) For all e1, e2 ∈ E and g ∈ G, one has 〈g.e1, g.e2〉 = g.〈e1, e2〉.

(ii) For all a ∈ A, g ∈ G, e ∈ E, one has g.(ea) = (g.e)(g.a).

The G-C-alebras we will use are all of the from C0(X), where X is a G-space.

A Z2-graded G-Hilbert A-module is a G-Hilbert A-module with a Z2-grading

and the G-action respects the grading. An operator F ∈ B(E) has degree 1 if F

reverses the grading on E = E0 ⊕ E1, that is, F sends elements in E0 (the even

part) to elements in E1 (the odd part), and sends elements in E1 to elements in

E0.

Definition 28 Let A,B be G-C∗-algebras. A Z2-graded equivariant Kasparov

(A,B)-module is a Kasparov (A,B)-module (E, φ, F ) with the following additional

properties:

(i) E is a Z2-graded G-Hilbert B-module
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(ii) φ : A → B(E) is a G-equivariant ∗-homomorphism which respects the Z2-

gradings, where G acts on B(E) by conjugation.

(iii) F ∈ B(E) has degree 1 and has the properties that the map g 7→ gFg−1

from G to B(E) is norm-continuous. And (gFg−1 − F )φ(a) is compact, that is,

(gFg−1 − F )φ(a) ∈ K(E).

Remark 29 By Prop. 20.2.4. in [B], when G is compact, F ∈ B(E) can be

assumed to be G-invariant. Then in Definition 28 (iii) above, (gFg−1 − F )φ(a) =

0 ∈ K(E). We will make use of this proposition in Section 2.6.

Define EG(A,B) to be the set of all Z2-graded equivariant Kasparov (A,B)-

modules. We have the following operations on EG(A,B).

(i) Direct Sum: Let (E1, φ1, F1), (E2, φ2, F2) ∈ EG(A,B). We can then form

the G-Hilbert B-module E1 ⊕E2. Given F1, F2 ∈ B(E), we can define an element

F1 ⊕ F2 ∈ B(E1 ⊕ E2) by

F1 ⊕ F2(e1, e2) = (F1e1, F2e2)

for e1 ∈ E1 and e2 ∈ E2. It is easy to see that F1⊕ F2 ∈ K(E1⊕E2) if and only if

F1 ∈ K(E1) and F2 ∈ K(E2). Similarly, define φ1 ⊕ φ2 : A→ B(E1 ⊕ E2) by

φ1 ⊕ φ2(a) = φ1(a)⊕ φ2(a)

Then (E1 ⊕ E2, φ1 ⊕ φ2, F1 ⊕ F2) ∈ EG(A,B).

(ii) Pullback : Let (E, φ, F ) ∈ EG(A,B) and let ψ : C → A be a G-equivariant

∗-homomorphism. Then (E, φ ◦ ψ, F ) ∈ EG(C,B) which is also denoted by

ψ∗(E, φ, F ).
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(iii) Pushout : Let (E, φ, F ) ∈ EG(A,B) and ψ : B → C be a G-equivariant

∗-homomorphism. We can form the G-Hilbert C-module E ⊗ψ C as the internal

tensor product of two Hilbert modules. It is defined as follows: First we form the

algebraic tensor product E ⊗B C which is a right C-module in the obvious way:

(x ⊗B y)c = x ⊗B yc. We can define a map 〈−,−〉 : E ⊗B C × E ⊗B C → C to

be the map which is linear in the first variable and conjugate linear in the second,

and satisfies

〈x1 ⊗B x2, y1 ⊗B y2〉 = 〈x2, ψ(〈x1, y1〉)y2〉

for x1, y1 ∈ E, x2, y2 ∈ C. This is legitimate since

〈ψ(b)x2, ψ(〈x1, y1〉)y2〉 = 〈x2, ψ(〈x1b, y1〉)y2〉

〈x2, ψ(〈x1, y1〉)ψ(b)y2〉 = 〈x2, ψ(〈x1, y1b〉)y2〉

for all b ∈ B. Set N = {z ∈ E⊗BC|〈z, z〉 = 0}. Then N is an C-submodule and we

can consider the quotient E⊗BC/N and the quotient map q : E⊗BC → E⊗BC/N .

Then E⊗BC/N is a right C-module by q(x)c = q(xc), x ∈ E⊗BC, c ∈ C. And we

can define the C-valued inner product on E⊗BC/N by 〈q(x), q(y)〉 = 〈x, y〉, x, y ∈

E⊗BC. The completion with respect to this pre-norm is denoted by E⊗ψC. The

G-action on E ⊗ψ C is defined by g.(e ⊗ψ c) = (ge ⊗ψ gc), g ∈ G, e ∈ E, c ∈ C.

E ⊗ψ C is called the internal tensor product of E and C. Then the pushout

ψ∗(E, φ, F ) is defined by (E⊗ψC, φ⊗ id, F ⊗ id), which is an element in EG(A,C).

The equivariant KK-theory KKG(A,B) is the set EG(A,B) modulo certain

unitary equivalence and homotopy relation as defined as follows.

Definition 30 Two Z2-graded equivariant Kasparov (A,B)-modules (E0, φ0, F0),

(E1, φ1, F1) are said to be unitarily equivalent if there is a G-equivariant isomor-

phism of Hilbert B-modules E0
∼= E1 that respects the gradings, and intertwines

F0 and F1, and φ0(a) and φ(a) for all a ∈ A.
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Definition 31 Two Z2-graded equivariant Kasparov (A,B)-modules (E0, φ0, F0),

(E1, φ1, F1) are said to be homotopic if there exists a Z2-graded equivariant Kas-

parov (A,C([0, 1], B))-module (E, φ, F ) with the following property. For j = 0, 1,

let evj : C([0, 1], B) → B be the evaluation map at j. Then (evj)∗(E, φ, F ) =

(E ⊗evj B, φ⊗ id, F ⊗ id) is unitarily equivalent to (Ej, φj, Fj).

Remark 32 A special case of homotopy of Z2-graded equivariant Kasparov

(A,B)-modules is operator homotopy. Two Z2-graded equivariant Kasparov

(A,B)-modules (E, φ, F ) and (E, φ, F ′) are said to be operator homotopic if

there is a norm-continuous map t 7→ Ft from [0, 1] to B(E) such that for all t,

(E, φ, Ft) ∈ EG(A,B) and F0 = F and F1 = F . If two Z2-graded Kasparov

(A,B)-modules are operator homotopic, then they are homotopic. The two homo-

topy relations are equivalent when the C∗-algebra A of EG(A,B) is separable, see

Section 2.1 in [JT].

Definition 33 The equivariant KK-theory of A and B is the abelian group

KKG(A,B) of Z2-graded equivariant Kasparov (A,B)-modules modulo homotopy,

with addition induced by the direct sum. The inverse is given by

−(E0 ⊕ E1, φ, F ) = (E1 ⊕ E0, φ,−F )

We call an element (E, φ, F ) ∈ EG(A,B) degenerate when [F, φ(a)] = (F 2 −

1)φ(a) = (F ∗ − F )φ(a) = 0 for all a ∈ A. The class of degenerate elements

is denoted by DG(A,B). It is not too difficult to show that every element in

DG(A,B) is homotopic to 0, see Lemma 2.1.20 in [JT].

Example 34 Let (M,ω) be a symplectic manifold. There is a natural almost

complex structure associated with the symplectic form ω of M . Let A = C0(M)
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and B = C. Let D′ = ∂̄ + ∂̄∗ be the Dolbeault operator acting on smooth forms

with compact support. Let H be the Hilbert space of L2-forms of bidegree (0,∗ )

on M , that is, H = L2(∧0,∗(M)). H is a Hilbert space graded by decomposing

the forms into even and odd forms. Then D′ is an essentially self-adjoint operator

(see [HR]) of degree 1. Note that D′ is an unbounded operator. Let f be the

real-valued function defined by f(x) = x/
√

1 + x2. By functional calculus, define

F = f(D′). F is now a bouned operator acting on the smooth forms with compact

support. Extend such an action to H by continuity. By abuse of notation, this

operator is denoted by F . Let m be the function multiplication of C0(M) on H.

Then [H,m, F ] ∈ KK(C0(M),C). It is also called the Dolbeault element of M ,

denoted by [∂̄M ].

Remark 35 The Dolbeault element serves as an important motivating example

for KK-theory. An element similar to it can also be defined in equivariant KK-

theory. It will be introduced in the next section, in which its properties will be

exploited to give results that are important to our main theorems.

KKG(A,B) is a homotopy invariant bifunctor. It is contravariant in the first

variable: If ψ : D → A, then we have the map ψ∗ : KKG(A,B) → KKG(D,A)

given by the pullback construction. It is covariant in the second variable: If ξ : B →

C, then we have the map ξ∗ : KKG(A,B)→ KKG(A,C) given by the pushforward

construction.

If the group G is trivial, we omit it from the notation and write it as KK(A,B).

In general, the equivariant K-homology of a G-C∗-algebra A is defined as

K0
G(A) : = KKG(A,C)
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In particular, if M is a locally compact Hausdorff space on which G acts properly,

then we can define the equivariant K-homology of M as:

KG
0 (M) : = KKG(C0(M),C)

On the other hand,

KKG(C, B) ∼= KG
0 (B)

where KG
0 (B) is the K-theory of G-C∗-algebras B, see Proposition 17.5.5 and

Theorem 18.5.3 in [B]. For the properties of K-theory of C∗-algebras, see also [B].

We will not use the general theory of KG
0 (B) here but only the following particular

case: If M is a compact G-space, we have

KKG(C, C(M)) ∼= K0
G(M)

where K0
G(M) is just the equivariant K-theory of M . A special case comes out of

it automatically: If M is a point, then

KKG(C,C) ∼= R(G)

where R(G) is the representation ring of G.

The introduction to KK-theory would be incomplete without mentioning the

Kasparov Product, which is the most important feature in KK-theory. The most

general form of it is the map:

KKG(A1, B1 ⊗ C)×KKG(C ⊗ A2, B2)
⊗C−→ KKG(A1 ⊗ A2, B1 ⊗B2)

It is a bilinear map. We will use the following notation for the Kasparov product:

(x, y) 7→ x⊗C y

Its definition is highly sophisticated so we will not define it here. A complete

discussion of this product can be found in [B], or [JT]. We will only use some

special cases of the Kasparov product:
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(i) When B1 = A2 = C, the Kasparov product becomes

KKG(A1, C)×KKG(C,B2)
⊗C−→ KKG(A1, B2), (x, y) 7→ x⊗C y

(ii) When C = C, the Kasparov product becomes

KKG(A1, B1)×KKG(A2, B2)
⊗C−→ KKG(A1 ⊗ A2, B1 ⊗B2), (x, y) 7→ x⊗C y

We also note the following two properties of Kasparov product, which will be

used frequently in the upcoming sections:

(i) The Kasparov product is associative. That is, if x ∈ KKG(A,D), y ∈

KKG(D,E), z ∈ KKG(E,B), then

(x⊗D y)⊗E z = x⊗D (y ⊗E z)

(ii) KKG(A,B) is endowed with a R(G)-module structure by the Kasparov

product:

KKG(C,C)×KKG(A,B)
⊗C−→ KKG(A,B)

2.3 Main results

Let G be a compact Lie group and T be its maximal torus. Let i : T → G be the

inclusion from T to G. Then every G-C∗-algebra A can be naturally considered as

an T -C∗-algebra via i, that is, t.x = i(t)x where t ∈ T and x ∈ A. Hence we have

a map naturally induced from i,

i∗ : KKG(A,B) −→ KKT (A,B)
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for all G-C∗-algebras A and B. This map is also called the restriction map and we

will also make use of a more descriptive notation as follows:

resGT : KKG(A,B) −→ KKT (A,B)

The goal of Sections 2.3.1 to 2.3.4 is to show that there is a left inverse

i! : KKT (A,B)→ KKG(A,B) of i∗ : KKG(A,B)→ KKT (A,B). That is,

i! ◦ i∗ = 1: KKG(A,B)→ KKG(A,B)

where i∗ : KKG(A,B) → KKT (A,B) is induced by the inclusion i : T → G.

Then we will prove our main Theorem 54 in 2.3.5 which describes the subgroup

i∗(KKG(A,B)) in terms of the divided difference operators.

2.3.1 Construction of [i∗] ∈ KKG(C, C(G/T ))

If A is an G-C∗-algebra, define IndGT (A) to be the G-C∗-algebra of all continuous

functions f : G → A such that f(gt) = t−1f(g) for all g ∈ G, t ∈ E and ||f ||

vanishes at infinity. The G-action on IndGT (A) is by left translation. Then there is

a fairly natural way to define the induction map

indGT : KKT (A,B) −→ KKG(IndGT (A), IndGT (B))

for all T -C∗-algebras A and B. Its definition and properties will be explained in

details in Section 2.6.

If B is an G-C∗-algebra, denote ResGT (B) to be the T -C∗-algebra by restrict-

ing the G-action to T -action. It can be shown that for all G-C∗-algebras A,

IndGT (ResGT (A)) is equivariantly isomorphic to A⊗ C(G/T ), see Section 2.6.
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We will construct an element [i∗] ∈ KKG(C, C(G/T )) corresponding to

i∗ : KKG(A,B)→ KKT (A,B)

Define

[i∗] = [C(G/T ), idC, 0] ∈ KKG(C, C(G/T ))

where idC stands for the scalar multiplication and C(G/T ) is naturally viewed as

a G-Hilbert C(G/T )-module. We need the following result by Wasserman [W].

Theorem 36 (Wasserman) Let G be a compact group, and T be its closed sub-

group. If A and B are G-C∗-algebras, then KKT (A,B) ∼= KKG(A,B ⊗C(G/T )).

Precisely speaking, if x ∈ KKT (A,B), then there is an isomorphism x 7→

j∗(indGT (x)) where j∗ is the map induced by the inclusion j : A ∼= A ⊗ 1 −→

A ⊗ C(G/T ) ∼= IndGT (A). And the inverse is given by y 7→ ev∗(res
G
T (y)) for

y ∈ KKG(A,B ⊗ C(G/T )) where ev : B ⊗ C(G/T ) → B is the evaluation at

identity, i.e. b⊗ f 7→ bf(1).

For a proof of it, see Section 2.6. Let θ be the isomorphism ev∗ ◦

resGT : KKG(A,B ⊗ C(G/T ))→ KKT (A,B).

Lemma 37 For any element x ∈ KKG(A,B),

θ(x⊗C [i∗]) = i∗(x) ∈ KKT (A,B)

Proof. It can be done by routine checking. Let x = [E, φ, F ] ∈ KKG(A,B), then

x⊗C [i∗] = [E ⊗ C(G/T ), φ⊗ id, F ⊗ id]

where E ⊗ C(G/T ) is the same as the external tensor product of two G-Hilbert

modules and hence is a G-Hilbert B ⊗ C(G/T )-module.

θ(x⊗C [i∗]) = ev∗◦resGT (x⊗C [i∗]) = [(E⊗C(G/T ))⊗evB, φ⊗idC⊗idB, F⊗id⊗idB]
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where (E ⊗ C(G/T )) ⊗ev B is a T -Hilbert B-module. It is clear that (E ⊗

C(G/T )) ⊗ev B is isomorphic to E as a T -Hilbert B-module. Let f be the iso-

morphism from (E ⊗ C(G/T )) ⊗ev B to E. Then it is straightforward to check

that

f ◦ (φ⊗ id⊗ idB)(a) = φ(a) ◦ f

and

f ◦ (F ⊗ id⊗ idB) = F ◦ f

for any a ∈ A, φ is viewed as a T -equivariant map and F is viewed as a T -Hilbert

B-module map by restricting the G-action to T -action. Hence, θ(x ⊗C [i∗]) and

i∗(x) are unitarily equivalent in ET (A,B) and our result follows.

2.3.2 Construction of [i!] ∈ KKG(C(G/T ),C)

G/T is equipped with a G-equivariant complex structure corresponding to a choice

of positive root system relative to (G/T ). Then we can construct an equivariant

Dolbeault element KKG(C(G/T ),C) in almost the same way as in Example 34:

The G-action on C(G/T ) is defined by

g.f(x) = f(g−1x)

for any g ∈ G, x ∈ G/T and f ∈ C(G/T ). The G-action on any smooth (0, ∗)-form

is defined by

g.s(x) = g(s(g−1x))

where g ∈ G, x ∈ G/T and s is a smooth section of vector bundle Ω(0,∗) of

complex differential forms of degree (0, ∗) over M . This action extends to an action

on L2(M,Ω(0,∗)) by continuity. Then let ∂ + ∂̄∗ be the G-equivariant Dolbeault

operator acting on smooth forms on G/T . From here, we simply use the same
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technique as in Example 34 to construct an (equivariant) Dolbeault element [∂̄G/T ]

in KKG(C(G/T ),C). Define [i!] to be [∂̄G/T ].

Remark 38 If A = C, B = C(M), where M is a compact G-space, then

KKG(C, C(M)) ∼= KG(M) and i! is the holomorphic induction from KT (X) to

KG(X) by Atiyah , see [A].

2.3.3 Kasparov product [i∗]⊗C(G/T ) [i!]

Following the definition of Kasparov product, we can get the following:

[i∗]⊗C(G/T ) [i!] = [C(G/T )⊗m L2(G/T, S), i, 1⊗D]

where C(G/T )⊗m L2(G/T, S), as an internal tensor product of two Hilbert mod-

ules, is viewed as a G-Hilbert space. G acts on it by

g.(f ⊗m h) = (g.f)⊗m (g.h)

where g ∈ G, f ∈ C(G/T ) and h ∈ C∞(G/T, S). We can extend this action to an

action on C(G/T ) ⊗m L2(G/T, S) by continuity. i is the scalar multiplication on

C(G/T )⊗m L2(G/T, S).

In general, the Kasparov product is hard to compute. But in our particular

case, Kasparov [K2] showed the following result:

Theorem 39 Let G be a compact group and M be a compact G-manifold. Let

[E] ∈ K0
G(M) be an element in the equivariant K-theory of M and let [∂̄M ] ∈

KKG(C(M),C) ∼= KG
0 (M) be the equivariant Dolbeault element. Then

[E]⊗C(M) [D] = G-index((∂̄M)E)
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where (∂̄M)E is the Dolbeault operator with coefficient in E.

Remark 40 If D is, say, an order-zero elliptic operator and E is a complex vector

bundle over a compact manifold M . In general it is permissible that D acts on

sections of bundles like the Dolbeault operator. But for the sake of notational

simplification we pretend that D acts on functions. We should think of D as a

bounded operator, by some basic functional calculus, on L2(M). Then we can

construct DE as an operator

DE : L2(M,E) −→ L2(M,E)

acting on sections of E. In general we define DE by using the local triviality of E

together with a partition of unity argument. Thus we choose a partition of unity

{f1, ..., fk} for M such that each fi is supported within an open set Ui over which

the bundle E is trivializable. Choosing trivializations and hence isomorphisms

L2(Ui, E|Ui) ∼= L2(Ui) ⊗ Ck where k is the dimension of the bundle, we define

operators (f
1/2
i Df

1/2
i )E on L2(Ui, E|Ui) by pulling back the operators f

1/2
i Df

1/2
i ⊗1

on L2(Ui)⊗ Ck via these isomorphisms. Finally we define DE to be the operator

DE =
k∑
i=1

(f
1/2
i Df

1/2
i )E

on L2(M,E). The operator we obtain in this way depends on the choice of partition

of unity. However, whatever the choices DE is a Fredholm operator and its index

does not depend on the choices. In this way we obtain an index ind(DE) ∈ Z

for every [E] ∈ K0(M). In the equivariant case where G is compact, DE is then

a G-equivariant Fredholm operator for [E] ∈ K0
G(M). The kernel and cokernel

are now (finite-dimensional) G-vector spaces and hence we get the G-index G −

index(DE) ∈ R(G).
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Topologically, the element [i∗] ∈ KKG(C, C(G/T )) ∼= K0
G(C(G/T )) corre-

sponds to the trivial G-bundle E0 over G/T . The homogeneous pseudo-differential

operator DE0 has G-index 1G ∈ R(G) by a result of Bott, see [Bo]. By Theorem

39, we have the following result:

Theorem 41 [i∗]⊗C(G/T ) [i!] = 1 ∈ KKG(C,C)

2.3.4 Push-pull operators

Recall the notation from Section 2.3.1 that θ : KKG(A,B ⊗ C(G/T )) →

KKT (A,B) denote the isomorphism by Wasserman’s Theorem. Then let

θ−1 : KKT (A,B) → KKG(A,B ⊗ C(G/T )) be the inverse of θ. Define

i! : KKT (A,B)→ KKG(A,B) by

i!(y) = θ−1(y)⊗C(G/T ) [i!]

for y ∈ KKT (A,B).

Lemma 42 i! ◦ i∗ = 1 as an action on KKG(A,B).

Proof. By Lemma 37 and by associativity of Kasparov product,

i!(i
∗(x)) = i!(θ(x⊗C [i∗]))

= (x⊗C [i∗])⊗C(G/T ) [i!]

= x⊗C ([i∗]⊗C(G/T ) [i!])

= x⊗C 1

= x
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for all x ∈ KKG(A,B) as desired.

Define σ : KKT (A,B) −→ KKT (A,B) by

σ = i∗ ◦ i!

Some properties of σ can be stated immediately.

Lemma 43 σ2 = σ and σ(i∗(x)) = i∗(x) for any x ∈ KKG(A,B).

Proof. By Section 2.3.3 and associativity of Kasparov product,

([i!]⊗ [i∗])⊗ ([i!]⊗ [i∗]) = [i!]⊗ ([i∗]⊗ [i!])⊗ [i∗] = [i!]⊗ [i∗]

Now it is obvious that σ2 = σ and σ(i∗(x)) = i∗(x) for any x ∈ KKG(A,B).

Remark 44 If A = C and B = C(SU(n)/T ), then KKT (C, C(SU(n)/T )) ∼=

KT (SU(n)/T ). Then σ is simply the divided difference operator ∂ω0 where ω0 is

the longest element in Sn, the symmetric group of n letters, see Section 1.4.2. See

Section 2.3.5 for further explanations.

In particular, if A = C, B = C, then KKT (C,C) ∼= R(T ) and KKG(C,C) ∼=

R(G). σ is the top Demazure’s operator ∂ω0 acting on R(T ), where ω0 is the

longest element in the Weyl Group W . More generally, Demazure [D3] defined

a set of operators δω for every Weyl element ω, see Section 2.3.5 for a very brief

introduction.

We do not introduce the definiton of the top Demazure’s operator at this point.

For the properties of this operator, see 2.3.5. But we just want to point out

that the most important property of ∂ω0 is its relation to the Weyl character
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formula. Let R be the root system of (G, T ) and W be the Weyl Group. Let

X (T ) = Hom(T, U(1)) be the character group of T . We denote by eλ the element

of R(T ) defined by a character λ ∈ X (T ). We fix a basis of the root system and

let

ρ =
1

2

∑
α∈R+

α

be the half-sum of all positive roots. The the Weyl character formula can be

interpreted as the following formula:

ch(u) =
A(u)

d
(2.1)

for all u ∈ R(T ). A(u) is the following alternating sums of elements in R(T ):

A(u) =
∑
ω∈W

(−1)l(ω)e−ρω(eρu)

where l(w) is the length of the Weyl element ω as explained in Section 1.4. d is

defined as follows:

d =
∏
α∈R+

(1− e−α)

In [D3], Demazure showed the following formula:

∂ω0(u) =
A(u)

d
(2.2)

for all u ∈ R(T ). Recall that the classical proof of the Weyl character formula

was done by using theory of compact Lie group and its Lie algebra, for example,

see [BD]. But in [AB], it was shown that the Weyl character formula can also be

interpreted as a computation of the character of an induced representation by an

analytic Lefschetz fixed-point formula. In terms of our definition of σ = i∗ ◦ i!

where i∗ : KKG(C,C) −→ KKT (C,C) and i! : KKT (C,C) −→ KKG(C,C) in this

special case, this interpretation is equivalent to the following result:

σ(u) =
A(u)

d
(2.3)
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in which we have used the identification KKT (C,C) ∼= R(T ). By (2.2), we have

σ(u) = ∂ω0(u) (2.4)

In the other words, the operator σ : KKT (A,B) −→ KKT (A,B) can be interpreted

as generalizations of both the Weyl character formula and the top Demazure’s

operator to Kasparov’s KK-theory.

We call a compact Lie group G a Hodgkin group if it is connected and has a

torsion-free fundamental group. In [Ho], Hodgkin proved the following result in

equivariant K-theory:

K∗T (M) ∼= R(T )⊗R(G) K
∗
G(M)

where G is a Hodgkin group, T is a maximal torus of G and M is any G-space

which is locally contractible and of finite covering dimension. Note that it is an

isomorphism of R(T )-modules. The following generalization of Hodgkin’s result to

KK-theory was due to A. Wasserman [W]. See Section 2.7 for a proof of it.

Theorem 45 (Wasserman) Let G be a Hodgkin group and T be a maximal torus

in G. For all G-C∗-algebras A and B,

KKT (A,B) ∼= KKG(A,B)⊗R(G) R(T )

They are isomorphic as R(T )-modules. The map KKG(A,B) ⊗R(G) R(T ) →

KKT (A,B) is given by x⊗ a 7→ a.i∗(x) where i : T → G is the inclusion map.

The next result is crucial for the constructions of divided difference operators

in Section 2.3.5.
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Theorem 46 Assume that G is a Hodgkin group. Identify the R(T )-modules

KKT (A,B) and KKG(A,B)⊗R(G) R(T ) via Theorem 45, then σ = 1⊗ ∂ω0, where

1 denotes the identity operator of KKG(A,B).

Proof. By the Wasserman’s Isomorphism θ : KKG(A,B ⊗ C(G/T )) →

KKT (A,B) and Theorem 45, we can identify KKG(A,B) ⊗R(G) R(T ) with

KKG(A,B ⊗ C(G/T )). But R(T ) is isomorphic to KKG(C, C(G/T )). Hence

we can consider KKG(A,B) ⊗R(G) KKG(C, C(G/T )) instead. Note that the

relation (xb) ⊗ c = x ⊗ (bc) ∈ KKG(A,B) ⊗R(G) KKG(C, C(G/T )) where

x ∈ KKG(A,B), b ∈ R(G) and c ∈ KKG(C, C(G/T )) is equivalent to (af-

ter making identifications of R(G) ∼= KKG(C,C)) the associativity of the Kas-

parov product (x ⊗C b) ⊗C c = x ⊗C (b ⊗C c). Then this theorem is almost

trivial. For any x ⊗ a ∈ KKG(A,B) ⊗R(G) R(T ), the operator 1 ⊗ ∂ω0 acts on

KKG(A,B)⊗R(G) KKG(C, C(G/T )) by

1⊗ ∂ω0(x⊗ a) = x⊗ ∂ω0a

= x⊗ (a⊗C(G/T ) [i!]⊗C [i∗])

In terms of Kasparov product, x⊗C(a⊗C(G/T )[i!]⊗C[i∗]) = (x⊗Ca)⊗C(G/T )[i!]⊗C[i∗].

But then (x⊗C a)⊗C(G/T ) [i!]⊗C [i∗] is essentially the same as σ(a.i∗(x)).

The next result is analogous to a result by Snaith [Sn].

Lemma 47 Let T̃ be a torus and s : T̃ → T a covering homomorphism. Then the

map s∗ : KKT (A,B)→ KKT̃ (A,B) is injective for all T -C∗-algebras A and B.

Proof. Let t : C → T̃ be the kernel of s. Let ET be

ET =
∏

λ∈X (C)

ET (A,B)
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where X (C) is the character group of C. We write an object of ET as an X (C)-

tuple ([Eλ, φλ, Fλ])λ∈X (C), where each [Eλ, φλ, Fλ] is an element in ET (A,B). The

restriction homomorphism s∗ : X (T̃ ) → X (C) is surjective, see [Sn]. We choose

a set-theoretic left inverse τ . Let ET̃ = ET̃ (A,B) and [E, φ, F ] ∈ ET̃ . Since C acts

trivially on T -C∗-algebra B, the C-invariant subspace EC of E is a well-defined

T -Hilbert B-module. For all objects [E, φ, F ] in ET̃ , define ν : ET̃ → ET by

ν([E, φ, F ]) = [Hom(Vτ(λ), E)C , φ̃λ, F̃λ]λ∈X (C)

where Hom(Vτ(λ), E) is the set of all T̃ -maps from Vτ(λ) to E. It is a T̃ -Hilbert

B-module with the B-module structure defined by

fb(v) = f(v)b

for all b ∈ B and v ∈ Vτ(λ). Then Hom(Vτ(λ), E)C is a T -Hilbert B-module.

φ̃λ : AC → B(Hom(Vτ(λ), E)C) where AC is a T -C∗-algebra by taking C-invariant

of the T̃ -action on A, is defined by

(φ̃λ(a)f)(v) = φ(a)(f(v))

for all f ∈ Hom(Vτ(λ), E), v ∈ Vτ(λ) and λ ∈ C (C). It is easy to check that φ̃λ is

a T -∗-homomorphism. Similarly, F̃λ ∈ B(Hom(Vτ(λ), E)C) is defined by

(F̃λ(f))(v) = F (f(v))

for all f ∈ Hom(Vτ(λ), E)C and v ∈ Vτ(λ). Again, it is routine to check that F̃λ is

a T -Hilbert B-module map.

For all objects [Eλ, φλ, Fλ]λ∈X (C) in ET , define µ : ET → ET̃ by

µ([Eλ, φλ, Fλ]λ∈X (C)) =
⊕

λ∈X (C)

[Vτ(λ) ⊗ s∗Eλ, id⊗ s∗φλ, id⊗ s∗Fλ]
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where s∗Eλ is regarded as a T̃ -Hilbert B-module through s. Likewise, s∗φλ and

s∗Fλ are regarded as T̃ -∗-homomorphism and T̃ -Hilbert B-module map via s re-

spectively. Vτ(λ) ⊗ s∗Eλ is the external tensor product of Vτ(λ) (as a T̃ -Hilbert

space) and s∗Eλ. Hence it is an T̃ -Hilbert B-module itself after identifying C⊗B

with B as T̃ -C∗-algebras.

Then, for all [Eλ, φλ, Fλ]λ∈X (C) in ET ,

ν(µ([Eλ, φλ, Fλ]λ)) = [Hom(Vτ(ψ),
⊕
λ

Vτ(λ)⊗s∗Eλ)C ,
⊕
λ

( ˜id⊗ s∗φλ)ψ,
⊕
λ

( ˜id⊗ s∗Fλ)ψ]ψ∈X (C)

And

Hom(Vτ(ψ),
⊕
λ

Vτ(λ) ⊗ s∗Eλ)C =
⊕
λ

Hom(Vτ(ψ), Vτ(λ) ⊗ s∗Eλ)C

=
⊕
λ

Hom(Vτ(ψ), Vτ(λ))
C ⊗ (s∗Eλ)

C

= Eψ

From here it is easily verified that

( ˜id⊗ s∗φλ)ψ = φψ

( ˜id⊗ s∗Fλ)ψ = Fψ

if λ = ψ. And ( ˜id⊗ s∗φλ)ψ = 0, ( ˜id⊗ s∗Fλ)ψ = 0 otherwise. and Hence,

νµ([Eλ, φλ, Fλ]λ) = [Eλ, φλ, Fλ]λ

For all objects [E, φ, F ] in ET̃ ,

µ(ν([E, φ, F ])) =
⊕
λ

[Vτ(λ) ⊗ s∗(Hom(Vτ(λ), E)C), id⊗ s∗φ̃λ, id⊗ s∗F̃λ]

We have ⊕
λ

Vτ(λ) ⊗ s∗(Hom(Vτ(λ), E)C) ∼= E
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by virtue of Chapter III (6.4) in [BD]. From here it is easily verified that

⊕
λ

id⊗ s∗φ̃λ ∼= φ⊕
λ

id⊗ s∗F̃λ ∼= F

Hence, we have

µν([E, φ, F ]) = [E, φ, F ]

We conclude that the categories ET̃ and ET are equivalent.

If two elements in x, y ∈ ET̃ (A,B) are homotopic, i.e. they represent the same

class in KKT̃ (A,B), then there exists an element a ∈ ET̃ (A,B[0, 1]) such that

(ev0)∗(a) = x and (ev1)∗(a) = y, where evj : B([0, 1]) → B is the evaluation at

j, j = 0, 1. We consider the element ν(a) = (aλ)λ∈X (C) ∈
∏

λ ET (A,B([0, 1])).

Then (ev0)∗((aλ)λ∈X (C)) and (ev1)∗((aλ)λ∈X (C)) are homotopic in
∏

λ ET (A,B).

A couple of definition-tracing arguments show that µ((ev0)∗((aλ)λ)) = x and

µ((ev1)∗((aλ)λ)) = y in ET̃ (A,B). It means that there is a well-defined injective

map from KKT̃ (A,B) to ⊕λKKT (A,B). A very similar argument starting from

two homotopic elements in
∏

λ ET (A,B) shows the reverse inclusion and hence we

obtain ⊕
λ∈X (C)

KKT (A,B) ∼= KKT̃ (A,B)

The isomorphism ⊕λKKT (A,B)→ KKT̃ (A,B) is defined by

[Eλ, φλ, Fλ]λ∈X (C) 7→
∑

λ∈X (C)

[Vτ(λ)]⊗C s∗([Eλ, φλ, Fλ])

where [Vτ(λ)] ∈ R(T̃ ) ∼= KKT̃ (C,C) and ⊗C is the Kasparov product over C. In

particular, setting A = C and B = C gives

⊕
λ∈X (C)

R(T ) ∼= R(T̃ )
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and hence ⊕
λ∈C (C)

KKT (A,B) ∼= R(T̃ )⊗R(T ) KKT (A,B)

Hence, we have

KKT̃ (A,B) ∼= R(T̃ )⊗R(T ) KKT (A,B)

which proves the lemma.

2.3.5 Main Theorem

In this section, we will show our main theorems, Theorem 52 and Theorem 54.

Let R be the root system of (G, T ) and W be the Weyl group. We fix a basis

of R. Let α be a root, Gα be the centralizer in G of kerα and iα : T → Gα be

the inclusion. Motivated by the definition of i!, we want to define a ‘pushforward’

map iα,! : KKT (A,B)→ KKGα(A,B) for every root α. First, we choose a complex

structure onGα/T . We do this by identifyingGα/T with the complex homogeneous

space (Gα)C/B where Bα is the Borel subgroup of (Gα)C generated by TC and the

root space g−αC . Then [iα,!] is defined in the same way as [i!] in Section 2.3.2.

Moreover, the map iα,! : KKT (A,B) → KKGα(A,B) is also defined in the same

way as i!, see 2.3.4.

Define σα : KKT (A,B) −→ KKT (A,B) by

σα = i∗α ◦ iα,!

for every root α.

By Lemma 43 for G = Gα, σα has the properties that σ2
α = σα and σα(i∗α(x)) =

i∗α(x) for x ∈ KKGα(A,B).
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Definition 48 σα as defined above is called the divided difference operator corre-

sponding to the root α. The set {σα|α ∈ R} is called the set of divided difference

operators which act on KKT (A,B).

Under the same assumptions as in Theorem 46 we have σα = 1 ⊗ δα for all

roots α.

Remark 49 As stated before, the power of equivariant KK-theory comes from

the fact that it generalizes both equivariant K-theory and equivariant K-homology.

On the K-theory side, when A = C and B = C(M) where M is a compact G-space,

our set of divided difference operators specializes to a set of divided difference

operators in T -equivariant K-theory of M , KT (M), which was first defined in

[HLS]. On the other hand, if B = C, then it simply means that we have now

abstractly defined a set of divided difference operators in K0
T (A), which is clearly

a new result.

The isobaric divided difference operators were introduced by Demazure [D3]

on R(T ). The precise definitions were as follows. Let sα ∈ W be the reflection

element in the root α. Let X (T ) be the character group of T and λ ∈X (T ), the

element eλ−e−αesα(λ) is uniquely divisible by 1−eα, then a Z-linear endomorphism

δα of R(T ) is defined by

δα(u) =
u− e−αsα(u)

1− e−α
(2.5)

for all u ∈ R(T ). It has the following important property:

δ2
α = δα

and

δα(1) = 1
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Alternatively, in a series of earlier papers [D1], [D2], Demazure defined the opera-

tors

δ′α(u) =
u− sα(u)

1− e−α
(2.6)

It is easy to see that

(δ′α)2 = δ′α

and

δ′α(1) = 0

In the literature, δα are usually called isobaric divided difference operators. For any

ω ∈ W and any reduced expression ω = sβ1sβ2 ...sβl in terms of simple reflections,

the composition δβ1δβ2 ...δβl takes the same value ∂ω. Similarly, the composition

δ′β1δ
′
β2
...δ′βl takes the same value ∂′ω = e−ρ∂ωe

−ρ, see [D3]. For the longest element

ω0, we call ∂ω0 the top Demazure’s operator.

Remark 50 When A = C, B = C(SU(n)/T ), the set of divided difference opera-

tors σα is the same as ∂i we used in Section 1.4.2, where i stands for the reflection

element si = (i, i+ 1) ∈ Sn. Sn is the Weyl Group in this case.

KKT (C, C(SU(n)/T )) ∼= K0
T (SU(n)/T ) ∼= R(T )⊗R(SU(n)) R(T )

Then by Theorem 46, σα acts as 1⊗δα on R(T )⊗R(SU(n))R(T ). By the identification

of R(T ) ⊗R(SU(n)) R(T ) with
Z[y±1

1 ,...,y±1
n ,x1,...,xn]

(J,(
∏n
i=1 yi)−1)

as we have done in equation (1.2)

in Section 1.4.3, it is now clear that 1⊗ δα acts as the divided difference operator

∂i that we defined in Section 1.4.2.

Let E = EndR(G)(R(T )) be the R(G)-algebra of R(G)-linear endomorphisms

of R(T ). Let D be the subalgebra of E generated by δα and the elements of R(T )
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(as multiplication operators). By definition of ∂ω, ∂′ω, we have ∂ω, ∂
′
ω ∈ D for all

ω. As a ring D is isomorphic to the Hecke algebra over Z of the extended affine

Weyl group X (T )oW , see [KL]. In [HLS] D is called the Hecke algebra.

The augmentation left ideal of D is the annihilator of the identity element

1 ∈ R(T ), that is

I(D) = {∆ ∈ D |∆(1) = 0}

By (2.5), D contains the group ring Z[W ] when Z[W ] is viewed as an algebra of

endomorphisms of R(T ). Hence I(D) naturally contains the augmentation ideal

I(W ) of Z[W ]. Since ∂′ω(1) = 0 for ω 6= 1, I(D) contains all ∂′ω when ω 6= 1.

Some properties of D and I(D) are noted as follows.

Theorem 51 (Harada, Landweber, Sjamaar) (i) (∂ω)ω∈W is a basis of the

left R(T )-module D .

(ii) (∂′ω)ω∈W is a basis of the left R(T )-module D .

(iii) (∂ω)ω 6=1 is a basis of the left R(T )-module I(D).

Let M be a left D-module. We say an element of M is D-invariant if it is

annihilated by all operators in the augmentation left ideal I(D). We denote M I(D)

the group of invariants. By Theorem 51,

M I(D) = {m ∈M |∂′ω(m) = 0, for all ω 6= 1}

Since I(D) contains the augmentation left ideal I(W ) of Z[W ], we have

M I(D) ⊆MW (2.7)

where MW contains elements that are invariant under the Weyl group action.
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We now show that KKT (A,B) is equipped with a left D-module structure in

Theorem 52. Then, by (2.7), we have the following

KKT (A,B)I(D) ⊆ KKT (A,B)W (2.8)

We will discuss (2.8) in Section 2.5.

Theorem 52 The operators σα for α ∈ R, together with the natural R(T )-module

structure generate a unique D-module structure on KKT (A,B).

Proof. The proof is very similar to Prop. 4.5 in [HLS] and is essentially an

application of Theorem 45, Theorem 46 and Lemma 47. First, assume that G is

a Hodgkin group. Idenitfy KKT (A,B) with KKG(A,B) ⊗R(G) R(T ) through the

isomorphism of Theorem 45. Let

E (A,B) = KKG(A,B)⊗ E

Then the map D → E (A,B) defined by ∆ 7→ 1⊗∆, where 1 is the identity map

of KKG(A,B), is a well-defined algebra homomorphism. Since σα = 1 ⊗ δα, σα

generates an well-defined action of D on KKT (A,B).

If G is not a Hodgkin group, we choose a covering s : G̃→ G such that G̃ is a

Hodgkin group. By Lemma 47 the pullpack

s∗ : KKT (A,B)→ KKT̃ (A,B)

is injective, where T̃ is the maximal torus s−1(T ) of G̃. Let σ̃α = ĩ∗α ◦ ĩα,! be the

operator on KKT̃ (A,B) corresponding to α, where ĩα : T̃ → G̃α is the inclusion.

By the naturality properties of i∗α and iα,!

s∗σα = σ̃αs
∗ (2.9)
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By Lemma 2.4 [HLS], s induces an injective algebra homomorphism

s : D → D̃

We already know that σ̃α generate a well-defined D̃-action on KKT̃ (A,B). This

D̃-module structure on KKT̃ (A,B) is unique due to Theorem 46. The restriction

of the D̃-action to the subalgebra D preserves the submodule KKT (A,B) and by

(2.9), the elements σα act in the required fashion. It is clear that the D-module

structure on KKT (A,B) so defined is unique.

By Theorem 52, it is now clear that if A = B = C, our set of divided difference

operators σα that acts on KKT (A,B) = KKT (C,C) ∼= R(T ) is the same as the

set of Demazure’s operators δα.

If G is a Hodgkin group, let U = D-Mod and B = R(G)-Mod be the categories

of left modules over the rings D and R(G) respectively. Before stating our next

theorem, we invoke the following result shown in [HLS].

Theorem 53 (Harada, Landweber, Sjamaar) If G is a Hodgkin group, then

the functor G : B → U defined by

B 7→ B ⊗R(G) R(T )

is an equivalence with inverse F : U → B given by

A 7→ HomD(R(T ), A)

Moreover, F is naturally isomorphic to the functor J : U → B given by

A 7→ AI(D)

The following result describes KKG(A,B) as a direct summand of KKT (A,B).

More precisely, KKG(A,B) is isomorphic to KKT (A,B) annihilated by ‘divided

difference operators’.
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Theorem 54 For all G-C∗-algebras A and B, the map i∗ is an isomorphism from

KKG(A,B) onto KKT (A,B)I(D) where i is the inclusion T → G.

Proof. First assume that G is a Hodgkin group, consider the D-module A =

KKT (A,B) and the R(G)-module B = KKG(A,B). By Theorem 45,

G (B) = A

Hence, by Theorem 53,

B ∼= F (A) ∼= J (A) = AI(D)

If G is not a Hodgkin group, we use the same trick as in the proof of Theorem 52

to get our desired result.

2.4 Some applications of Theorem 54

If A = C and B = C(M) where M is a compact G-space. Theorem 54 specializses

to equivariant K-theory:

KG(M) ∼= KT (M)I(D)

which is one of the main results in [HLS].

On the other hand, if B = C, then Theorem 54 gives the corresponding result

in equivariant K-homology, that is

Corollary 55 If A is a G-C∗-algebra, then

K0
G(A) ∼= K0

T (A)I(D)

In particular, if A = C(M) where M is a compact G-manifold, then we have
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Corollary 56 Let M be a compact G-manifold, then

KG
0 (M) ∼= KT

0 (M)I(D)

2.5 The difference between KKT (A,B)I(D) and KKT (A,B)W

Note that if A = B = C, then the equivariant KK-group KKG(C,C) is isomorphic

to R(G). And Theorem 54 gives the following result:

R(G) ∼= R(T )I(D)

But R(G) is also isomorphic to the Weyl invariant of R(T ), R(T )W . It means that

in the case of character ring of T , R(T )W = R(T )I(D). One may wonder whether

this result generalizes to the equivariant KK-group for any G-C∗-algebras A and

B. But the following example clearly shows that it is far from being true even for

equivariant K-theory, let alone equivariant KK-theory.

Example 57 It was first given by Mcleod [M]. Let M = SU(2) × RP 2 be a G-

space with G = SU(2) acting freely on the SU(2) factor and trivally on the second

factor RP 2. We have the following:

KG(M) = KSU(2)(SU(2)× RP 2) ∼= K(RP 2) ∼= Z⊕ Z2

while

KT (M) = KU(1)(SU(2)× RP 2) ∼= K(S2 × RP 2) ∼= (Z⊕ ZH)⊗ (Z⊕ Z2)

where H is the Hopf bundle. The Weyl group is isomorphic to S2 which acts on

the Hopf bundle by H 7→ H−1 = 2−H. Thus,

KT (M)W = KU(1)(SU(2)× RP 2)S2 = Z⊕ Z⊕ Z2

For a generalization of this example, see [HLS].
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Mcleod gave a criterion for KG(M) to be isomorphic to KT (M)W as follows.

Theorem 58 (Mcleod) If KT (M) is a free module over R(T ), then

KG(M) ∼= KT (M)W

However, the previous example showed that the free module requirement is very

restrictive.

If M is a compact Hamiltonian G-manifold, then the restriction map

KT (M) −→ KT (MT ) induced by MT −→M is injective by Theorem 2.5 in [HL2].

Based on this result, it was shown in [HLS] that

KG(M) ∼= KT (M)W (2.10)

In [K2], Kasparov constructed a map τ : KKG(C(M),C) −→ KKG(C, C(M))

for any even-dimensional compact G-manifolds M with G-equivariant spinc-

structure and used it to show that it is an isomorphism in G-equivariant KK-

theory:

KKG(C(M),C) ∼= KKG(C, C(M)) (2.11)

It is called the Poincare duality in equivariant KK-theory. The generalization of

this result to other topological spaces M is one of the most important themes in

KK-theory.

For a compact Hamiltonian G-manifold M with a G-equivariant symplectic

form ω, there is an G-equivariant almost complex structure naturally associated

with ω. It is canonical in the sense that it is unique up to homotopy. We obtain a

G-equivariant spinc-structure on M by this equivariant almost complex structure.
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Thus, we can combine Kasparov’s result (2.11) with (2.10) to give the following

corollary.

Corollary 59 If M is a compact Hamiltonian G-manifold, then

KG
0 (M) ∼= KT

0 (M)W

where KG
0 (M) is the G-equivariant K-homology of M .

Finally, we state some criteria forKKG(A,B) to be isomorphic toKKT (A,B)W

in this section. Recall that d =
∏

α∈R+(1− e−α) ∈ R(T ) is the Weyl denominator

in (2.1).

Lemma 60 Assume that the Weyl denominator d =
∏

α∈R+(1 − e−α) ∈ R(T ) is

not a zero divisor in the R(T )-module KKT (A,B), then the map i∗ is an isomor-

phism from KKG(A,B) to KKT (A,B)W where i is the inclusion T → G.

Proof. It follows immediately from Lemma 3.5 in [HLS].

The following corollary is immediate by Lemma 60. It is a generalization of

Theorem 58.

Corollary 61 If KKT (A,B) is a free module over R(T ), then

KKG(A,B) ∼= KKT (A,B)W

2.6 Proof of Theorem 36

Theorem 36 is a version of Frobenius Reciprocity in equivariant KK-theory. As

promised in section 2.1 a proof will be provided here. We will only prove it for the
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case that G is a compact group and A, B are G-C∗-algebras.

Recall from 2.3 that if A,B are G-C∗-algebras, the we have the restriction map:

resGT : KKG(A,B)→ KKT (A,B)

which is defined by sending x = [E, φ, F ] ∈ KKG(A,B) to x|T = [E|T , φ|T , F |T ] ∈

KKT (A,B) where E|T is regarded as an T -Hilbert B-module. φ is regarded as an

T -∗ homomorphism and F is regarded as an T -bounded operator in B(E|T ). To

avoid notational confusion, we will also use the notations ResGTE, ResGTF , ResGT φ

for E|T , F |T , φ|T respectively.

On the other hand, if M is an T -C∗-algebra, then IndGT (M) is the G-C∗-algebra

of all continuous functions f : G → M such that f(gh) = h−1f(g),∀g ∈ G, h ∈ T

and such that ‖ f ‖ vanishes at infinity. Since we are dealing with the case that

G/T is compact, the C∗-norm of each element in IndGT (M) is just the maximum

norm. The G-action on IndGT (M) is left translation.

If A is an G-C∗-algebra, then IndGT (ResGT (A)) is equivariantly isomorphic to

A ⊗ C(G/T ). We denote the isomorphism from IndGT (ResGT (A)) to A ⊗ C(G/T )

by Φ. More explicitly, if FA ∈ IndGT (ResGT (A)), then Φ(FA)([g]) = gFA(g). The

inverse map Φ−1 : A⊗C(G/T )→ IndGT (ResGT (A)) is defined as follows: for a⊗f ∈

A⊗ C(G/T ), Φ−1(a⊗ f)(g) = f(g)g−1a.

We are going to describe an induction map from the T -equivariant KK-theory

to the G-equivariant KK-theory for any G-C∗-algebras A,B.

Let E is an T -Hilbert B-module, define Ẽ := IndGTE by

IndGTE = {fE : G→ E | f(gt) = t−1f(g)}
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It has an IndGTB-valued inner product defined by

〈fE, f ′E〉(g) := 〈fE(g), f ′E(g)〉

for any fE, f
′
E ∈ IndGT (E) and g ∈ G.

Lemma 62 Ẽ is an G-Hilbert IndGTB-module.

Proof. For fB ∈ IndGT (B) and fE ∈ IndGT (E), we have

(fEfB)(gt) = fE(gt)fB(gt)

= (t−1fE(g))(t−1fB(g))

= t−1(fE(g)fB(g))

= t−1(fEfB)(g)

Hence fEfB ∈ IndGT (E). Moreover,

〈fE, f ′E〉(gt) = 〈fE(gt), f ′E(gt)〉

= 〈t−1fE(g), t−1f ′E(g)〉

= t−1〈fE(g), f ′E(g)〉

= t−1(〈fE, f ′E〉(g))

Hence, 〈fE, f ′E〉 ∈ IndGT (B). It is easy to check that 〈fE, f ′EfB〉 = 〈fE, f ′E〉fB and

other properties of Hilbert IndGTB-module are easily verified. The G-action on

IndGT (E) is left translation for all fE ∈ IndGT (E). Then

g〈fE, f ′E〉(x) = 〈fE, f ′E〉(g−1x)

= 〈fE(g−1x), f ′E(g−1x)〉

= 〈gfE(x), gf ′E(x)〉
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Similarly, other properties of G-Hilbert module structure are easily verified.

If φ : A → B(E) an T -∗-homomorphism, define φ̃ := IndGT φ : IndGTA →

B(IndGTE) by

φ̃(fA)(fE)(g) : = φ(fA(g))(fE(g))

for all g ∈ G, fA ∈ IndGTA, fE ∈ IndGTE.

Lemma 63 φ̃ is a well-defined G-∗-homomorphism.

Proof. First of all, we need to check that it is well-defined:

φ̃(fA)(fE)(gt) = φ(fA(gt))(fE(gt))

= φ(t−1fA(g))(t−1fE(g))

= (t−1φ(fA(g))t)(t−1fE(g))

= t−1φ(fA(g))(fE(g))

= t−1φ̃(fA)(fE)(g)

So φ̃(fA)(fE) ∈ IndGT (E). And

‖ φ̃(fA)(fE)(g) ‖2 = ‖ φ(fA(g))(fE(g)) ‖2

≤ ‖ φ(fA(g)) ‖2‖ fE(g) ‖2

≤ ‖ φ̃(fA) ‖2‖ fE ‖2

Hence, φ̃(fA) ∈ B(IndGT (E)). It is straightforward to see that φ̃(fA)∗ exists and
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φ̃(fA)∗ ∈ B(IndGT (E)). It is readily checked that φ̃ is an G-∗-homomorphism:

(gφ̃(fA)g−1)(fE)(x) = gφ̃(fA)(g−1fE)(x)

= gφ(fA(x))(g−1fE(x))

= gφ(fA(x))(fE(gx))

= gφ(gfA(gx))(fE(gx))

= gφ̃(gfA)(fE)(gx)

= φ̃(gfA)(fE)(x)

Hence, (gφ̃(fA)g−1)(fE) = φ̃(gfA)(fE).

Let F ∈ B(E) where E is an T -Hilbert B-module. We construct F̃ ∈

B(IndGT (E)) as follows:

F̃ (fE)(g) := F (fE(g))

Lemma 64 F̃ is a well-defined operator on Hilbert IndGTB-module map E. F̃ is

G-invariant.

Proof.

F̃ (fE)(gt) = F (fE(gt)) = F (t−1fE(g))

= t−1F (fE(g))t = t−1.F (fE(g))

= t−1.F̃ (fE)(g)

So, F̃ (fE) ∈ IndGTE.

F̃ (fEfB)(g) = F (fEfB(g)) = F (fE(g)fB(g))

= F (fE(g))fB(g) = F̃ (fE)(fB)(g)
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i.e. F̃ (fEfB) = F̃ (fE)fB. Hence, F̃ is an IndGTB-module map.

‖ F̃ (fE) ‖IndGTE = sup ‖ F̃ (fE)(g) ‖= sup ‖ F (fE(g)) ‖

≤ sup ‖ F ‖‖ fE(g) ‖

= ‖ F ‖ sup ‖ fE(g) ‖

= ‖ F ‖‖ fE ‖

So, F̃ ∈ B(IndGTE). Define F̃ ∗(fE)(g) := F ∗(fE(g)).

〈F̃ (fE), f ′E〉(g) = 〈F̃ (fE)(g), f ′E(g)〉

= 〈F (fE(g)), f ′E(g)〉

= 〈fE(g), F ∗(f ′E(g))〉

= 〈fE, F̃ ∗(f ′E)〉(g)

So, F̃ ∗ = F̃ ∗. F̃ is also G-continuous. i.e. g 7→ g.F̃ is continuous in norm topology.

g.F̃ (fE)(x) = gF̃ g−1(fE)(x)

= F̃ (g−1fE)(g−1x)

= F (g−1fE(g−1x))

= F (fE(x))

= F̃ (fE)(x)

So, F̃ is indeed G-invariant.

The induction homomorphism

indGT : KKT (A,B)→ KKG(IndGT (A), IndGT (B))

is defined by sending x = [E, φ, F ] ∈ KKT (A,B) to indGT (x) = [Ẽ, φ̃, F̃ ] ∈

KKG(IndGTA, Ind
G
TB). It is clear that it is well-defined.
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We give a proof of Theorem 36 now.

Proof of Theorem 36: Let x = [E, φ, F ] ∈ KKT (A,B) and i∗(indGT (x)) = [Ẽ, φ̃◦

i, F̃ ] where φ̃ ◦ i : A → B(Ẽ). For a ∈ A, define Ka ∈ IndGT (A) by Ka(g) = g−1a.

Note that the G-action on Ka gives g.Ka = Kga. Under the isomorphism between

A⊗C(G/T ) and IndGT (A), we can identify a⊗1 ∈ A⊗C(G/T ) with Ka ∈ IndGT (A)

for each a ∈ A.

(φ̃ ◦ i)(a)(fE)(g) = φ̃(Ka)(fE)(g)

= φ(Ka(g))(fE(g))

= φ(g−1a)(fE(g))

And resGT ◦ i∗ ◦ indGT (x) = [Ẽ |T , (φ̃ ◦ i) |T , F̃ |T ]

For a G-∗-homomorphism f : B → D, the pushforward f∗ : KKG(A,B) →

KKG(A,D) is, by definition, [M, ξ,N ] 7→ [M⊗fD, ξ⊗idD, N⊗idD] where M⊗fD

is the internal tensor product of G-Hilbert B-module with D, viewed as a Hilbert

D-module. For x = [E, φ, F ] ∈ KKT (A,B), we have

ev∗ ◦ resGT ◦ i∗ ◦ indGT (x) = [resGT (Ẽ)⊗ev B, (resGT (φ̃ ◦ i∗))⊗ idB, resGT (F̃ )⊗ idB]

which is an element in KKT (A,B). resGT (Ẽ) is a T -Hilbert B ⊗ C(G/T )-module,

resGT (Ẽ)⊗ev B is then a T -Hilbert B-module, where ev : B ⊗ C(G/T )→ B is the

evaluation at identity. For fE, f
′
E ∈ resGT (Ẽ), b1, b2 ∈ B,

〈fE ⊗ b1, f
′
E ⊗ b2〉resGT (Ẽ)⊗evB = b∗1ev(〈fE, f ′E〉)b2

= b∗1〈fE, f ′E〉(1)b2

= b∗1〈fE(1), f ′E(1)〉b2

= 〈fE(1)b1, f
′
E(1)b2〉

Our goal is to show that x = ev∗ ◦ resGT ◦ i∗ ◦ ιGT (x) ∈ KKT (A,B).

73



Claim: Ẽ ⊗ev B is isomorphic to E as T -Hilbert B-modules, i.e. resGT (Ẽ)⊗ev

B ∼= E.

Proof of claim: Define Q : resGT (Ẽ)⊗ev B → E by fE ⊗ b 7→ fE(1)b.

Q((fE ⊗ b)b1) = Q(fE ⊗ bb1) = fE(1)bb1 = (fE(1)b)b1

= Q(fE ⊗ b)b1

Q(t(fE ⊗ b)) = Q(tfE ⊗ tb) = (tfE(1))(t(b)) = t(fE(1)b)

= tQ(fE ⊗ b)

Hence, Q is a T -Hilbert B-module map. Since G is compact, for each x ∈ E, we

can choose a constant function fx : G→ E in Ẽ defined by fx(g) = x for all g ∈ G.

Then Q(fx ⊗ b) = xb for all b ∈ B. So Q is surjective. Notice that

〈f ′E ⊗ b1, f
′′
E ⊗ b2〉 = 〈f ′E(1)b1, f

′′
E(1)b2〉

〈Q(f ′E ⊗ b1), Q(f ′′E ⊗ b2)〉 = 〈f ′E(1)b1, f
′′
E(1)b2〉

So, Q is isometric. Hence Q is an isomorphism between Ẽ⊗evB and E as T -Hilbert

B-modules.

Claim: For any a ∈ A, b ∈ B, the following diagram is commutative:

resGT (Ẽ)⊗ev B
(resGT (φ̃◦i)⊗idB)(a⊗b)
−−−−−−−−−−−−−→ resGT (Ẽ)⊗ev ByQ yQ

E
φ(a)−−−→ E

Proof of claim: For any fE ⊗ b ∈ resGT (Ẽ)⊗ev B,

Q((resGT (φ̃ ◦ i)⊗ idB)(a⊗ b)(fE ⊗ b)) = Q(resGT (φ̃ ◦ i)(a)(fE)⊗ idB(b))

= (resGT (φ̃ ◦ i)(a))(fE)(1)b

= φ(Ka(1))(fE(1))b

= φ(a)(fE(1))b
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And

φ(a)(Q(fE ⊗ b)) = φ(a)(fE(1)b) = φ(a)(fE(1))b

So the claim is proved.

Claim: The following diagram is commutative:

resGT (Ẽ)⊗ev B
resGT (F̃ )⊗idB−−−−−−−→ resGT (Ẽ)⊗ev ByQ yQ

E
F−−−→ E

Proof of claim: For any fE ⊗ b ∈ resGT (Ẽ)⊗ev B,

Q((resGT F̃ )⊗ idB)(fE ⊗ b) = Q(resGT F̃ (fE)⊗ idB(b))

= F̃ (fE)(1)b

= F (fE(1))b

And

F (Q(fE ⊗ b)) = F (fE(1)b) = F (fE(1))b

The claim is proved. We have shown that x = ev∗◦resGT ◦i∗◦indGT (x) ∈ KKT (A,B).

On the other hand, take any y = [V, ψ,W ] ∈ KKG(A,B ⊗ C(G/T )). By

Prop.20.2.4 in [B], we can assume that W is G-invariant. V is a G-Hilbert B ⊗

C(G/T )-module. IndGT (resGT (V )⊗ev B) is a G-Hilbert B ⊗ C(G/T )-module.

Claim: V is isomorphic to IndGT (resGT (V ) ⊗ev B) as G-Hilbert B ⊗ C(G/T )-

module.

Proof of claim: Define Φ: V → IndGT (resGT (V ) ⊗ev B) by Φ(efB)(g) = g−1e ⊗
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fB(g) for any e ∈ V, fB ∈ IndGT (B) ∼= B ⊗ C(G/T ), g ∈ G. Then

‖ Φ(efB) ‖2 = max ‖ Φ(efB)(g) ‖2

= max ‖ g−1e⊗ fB(g) ‖2

= max ‖ 〈g−1e⊗ fB(g), g−1e⊗ fB(g)〉 ‖

= max ‖ fB(g)∗〈g−1e, g−1e〉(1)fB(g) ‖

= max ‖ fB(g)∗g−1〈e, e〉(1)fB(g) ‖

‖ efB ‖2 = max ‖ efB(g) ‖2

= max ‖ fB(g)∗〈e, e〉(g)fB(g) ‖

= max ‖ fB(g)∗g−1〈e, e〉(1)fB(g) ‖

So, Φ preserves the norm.

Φ(efBf
′
B)(g) = g−1e⊗ fB(g)f ′B(g) = (g−1e⊗ fB(g))f ′B(g) = Φ(efB)(g)f ′B(g)

= (Φ(efB)f ′B)(g)

gΦ(efB)(g1) = Φ(efB)(g−1g1)

= (g−1g1)−1e⊗ fB(g−1g1)

= g−1
1 ge⊗ gfB(g1)

= Φ((ge)(gfB))(g1)

= Φ(g(efB))(g1)

So, Φ is a G-Hilbert B⊗C(G/T )-module map. And it is clear that Φ is surjective

so it defines an isomorphism between IndGT (resGT (V ) ⊗ev B) and V as G-Hilbert

B ⊗ C(G/T ) modules.
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Claim: For any a ∈ A, the following diagram is commutative:

V
ψ(a)−−−→ VyΦ

yΦ

IndGT (resGT V ⊗ev B)
IndGT (resGT ψ⊗IdB)◦i(a)
−−−−−−−−−−−−−→ IndGT (resGT V ⊗ev B)

Proof of claim: For any e ∈ V , fB ∈ IndGT (B) ∼= B ⊗ C(G/T ), g ∈ G,

Φ(ψ(a)(efB))(g) = Φ((ψ(a)(e))fB)(g)

= g−1(ψ(a)(e))⊗ fB(g)

= ψ(g−1a)(g−1e)⊗ fB(g)

The last equality is due to:

ψ(g−1a)(g−1e) = g−1ψ(a)gg−1e = g−1ψ(a)(e)

On the other hand,

(IndGT (resGTψ ⊗ IdB) ◦ i(a))(Φ(efB))(g) = (IndGT (resGTψ ⊗ IdB))(Ka)(Φ(efB))(g)

= (resGTψ ⊗ IdB)(Ka(g))(Φ(efB)(g))

= (resGTψ ⊗ IdB)(g−1a)(g−1e⊗ fB(g))

= ψ(g−1a)(g−1e)⊗ fB(g)

It proves the claim.

Claim: The following diagram is commutative:

V
W−−−→ VyΦ

yΦ

IndGT (resGT V ⊗ev B)
IndGT (resGTW⊗IdB)
−−−−−−−−−−−→ IndGT (resGT V ⊗ev B)
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Proof of claim: For any v ∈ V , fB ∈ IndGT (B), g ∈ G,

IndGT (resGTW ⊗ IdB)(Φ(vfB))(g) = (resGTW ⊗ IdB)(Φ(vfB)(g))

= (resGTW ⊗ IdB)(g−1v ⊗ fB(g))

= W (g−1v)⊗ fB(g)

Φ ◦W (vfB)(g) = Φ(W (vfB))(g) = Φ(W (v)fB)(g)

= g−1(W (v))⊗ fB(g)

Since W is G-invariant, then

g−1(W (v)) = g−1(W (gg−1v)) = g−1.W (g−1v) = W (g−1v)

The last equality is by G-invariance of W . Hence we have shown that y = i∗◦indGT ◦

ev∗ ◦ resGT (y) ∈ KKG(A,B ⊗ C(G/T )). It concludes our proof of the theorem.

2.7 Proof of Theorem 45

In this section, we give a sketch proof of Theorem 45:

Proof. The basic idea is similar to the one proved by Rosenberg and Schochet

in Theorem 3.7 (i) of [RS] for the case of K-theory of C∗-algebras. Therefore we

content ourselves here with a sketch of proof. A particular case of a theorem in

[K2] showed that there is a Poincare duality

δ : KKG(C(G/T ),C)→ KKG(C, C(G/T ))

which is an isomorphism. And more generally, we have an isomorphism

δC(G/T ) : KKG(C(G/T ), C(G/T ))→ KKG(C, C(G/T )⊗ C(G/T ))
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By a theorem of Mcleod [M],

KKG(C, C(G/T )⊗C(G/T )) ∼= K∗G(G/T ×G/T ) ∼= K∗T (G/T ) ∼= R(T )⊗R(G)R(T )

Steinberg’s theorem [St] provides a free basis {eω}ω∈W for R(T ) as a R(G)-module,

where W ∼= N(T )/T is the Weyl group of (G, T ). Then there exist an unique set

of elements {bω}ω∈W of R(T ) ∼= KKG(C, C(G/T )) such that

δC(G/T )(1C(G/T )) =
∑
ω∈W

bω ⊗C eω

Note that ⊗C is the Kasparov product. For ω ∈ W , let

aω = δ−1(bω)

Then we have, for 1C(G/T ) ∈ KKG(C(G/T ), C(G/T )),

1C(G/T ) = δ−1
C(G/T )(δC(G/T )(1C(G/T )))

= δ−1
C(G/T )(

∑
ω∈W

bω ⊗C eω)

=
∑
ω∈W

δ−1(bω)⊗C eω

=
∑
ω∈W

aω ⊗C eω

The third equality is done by the associativity of Kasparov product. Then we have

the following calculation for any v ∈ W :

ev = ev ⊗C(G/T ) 1C(G/T ) = ev ⊗C(G/T ) (
∑
ω∈W

aω ⊗C eω)

=
∑
ω∈W

(ev ⊗C(G/T ) aω)⊗C eω

which means that if v = ω, ev⊗C(G/T )aω = 1R(G). And ev⊗C(G/T )aω = 0 otherwise.

For any element y ∈ KKT (A,B) ∼= KKG(A,B⊗C(G/T )) (the isomorphism is by
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Theorem 36),

y = y ⊗C(G/T ) 1C(G/T )

= y ⊗C(G/T ) (
∑
ω∈W

aω ⊗C eω)

=
∑
ω∈W

(y ⊗C(G/T ) aω)⊗C eω (2.12)

Note that y ⊗C(G/T ) aω ∈ KKG(A,B). If

y =
∑
ω∈W

xω ⊗C eω

for some xω ∈ KKG(A,B). Then

y ⊗C(G/T ) au = (
∑
ω∈W

xω ⊗C eω)⊗C(G/T ) au

=
∑
ω∈W

xω ⊗C (eω ⊗C(G/T ) au)

=
∑
ω∈W

xω ⊗C δuw

= xu

Hence, equation (2.12) is an unique expression for y ∈ KKT (A,B). It means that

KKT (A,B) and R(T ) ⊗R(G) KKG(A,B) are isomorphic as R(G)-module. It is

clear that they are also isomorphic as R(T )-module.
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