eCommons

 

Ferromagnetic Thermal Ablation of Prostate Tumor

Other Titles

Abstract

There are many forms of treatment for prostate cancer. One set of treatments is called hyperthermia, the heating of tumor tissue to destroy it. Thermal ablation is a form of hyperthermia that destroys both normal and cell tissue. It occurs at temperatures of about 46 C or above. Heating is accomplished via various methods that have their own advantages and disadvantages. Furthermore, heating can be local, regional, or whole-body, meaning it can focus on small specific location, large organ areas, or the whole body. Our project focuses on ferromagnetic heating of local tumors. Ferromagnetic materials are magnetic materials that heat under an alternating, appropriately oriented, magnetic field. They heat until they reach their Curie point, the temperature at which they become non-magnetic and stop heating. The advantages of ferromagnetic heating is that is self-regulating since ferromagnetic implants will not heat beyond their Curie point, it can be easily localized since implants can be inserted in various configuratoins, it is repeatable if the implants do not degrade, and it is relatively inexpensive. Our goal was to simulate, via computational methods, the work done by Thermal Ablation Technologies, a company that designs ferromagnetic heating systems for thermal ablation of prostate tumors. We will examine the results of computer simulations of single implants and an array of implants. These results will be displayed in the form of temperature contours at specific times and temperature-time history plots at specific locations. We will determine from our analysis which parameters of ferromagnetic implant design are most crucial.

Journal / Series

Volume & Issue

Description

This item is not available.

Sponsorship

Date Issued

2001-01-07T22:01:00Z

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

term paper

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record