JavaScript is disabled for your browser. Some features of this site may not work without it.
Annual mean soluble iron deposition and ocean BGC response for each case in Hamilton et al. (2020)

Author
Hamilton, Douglas S; Moore, Keith; Arneth, Almut; Bond, Tami; Carslaw, Ken S; Hanston, Stijn; Ito, Akinori; Kaplan, Jed O; Lindsay, Keith; Nieradzik, Lars P; Rathod, Sagar D; Scanza, Rachel A; Mahowald, Natalie M
Abstract
Iron can be a growth‐limiting nutrient for phytoplankton, modifying rates of net primary production, nitrogen fixation, and carbon export, highlighting the importance of new iron inputs from the atmosphere. The bioavailable iron fraction depends on the emission source and the dissolution during transport. The impacts of anthropogenic combustion and land use change on emissions from industrial, domestic, shipping, desert, and wildfire sources suggest that Northern Hemisphere soluble iron deposition has likely been enhanced between 2 to 68% over the Industrial Era. If policy and climate follow the intermediate Representative Concentration Pathway 4.5 trajectory then results suggest that Southern Ocean (>30°S) soluble iron deposition would be enhanced between 63 to 95% by 2100. Marine net primary productivity and carbon export within the open ocean are most sensitive to changes in soluble iron deposition in the Southern Hemisphere; this is predominantly driven by fire rather than dust iron sources. Changes in iron deposition cause large perturbations to the marine nitrogen cycle, up to 70% increase in denitrification and 15% increase in nitrogen fixation, but only modestly impacts the carbon cycle and atmospheric CO2 concentrations (1‐3 ppm). Regionally, primary productivity increases due to increased iron deposition are often compensated by offsetting decreases downstream corresponding to equivalent changes in the rate of phytoplankton macronutrient uptake, particularly in the equatorial Pacific. These effects are weaker in the Southern Ocean, suggesting that changes in iron deposition in this region dominates the global carbon cycle and climate response.
Sponsorship
This work was supported by Department of Energy (DOE) and National Science Foundation (NSF) grants for atmospheric deposition impacts on ocean biogeochemistry (DE-Sc0016362; NSF 1049033; CCF-1522054).
DSH was also supported by the Atkinson Center for a Sustainable Future.
JKM was also supported by DOE grant DE-SC0016539.
AA would like to thank the Helmholtz Foundation, its ATMO programme and its impulse and integration fund.
TCB and SDR thank the NSF grant (1049033) for its support.
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.
Date Issued
2020-02-25Subject
iron cycle; carbon cycle; nitrogen cycle; marine net primary productivity
Related Publication(s)
Douglas S. Hamilton, Keith Moore, Almut Arneth, Tami Bond, Ken S. Carslaw, Stijn Hanston, Akinori Ito, Jed O. Kaplan, Keith Lindsay, Lars P. Nieradzik, Sagar D. Rathod, Rachel A. Scanza, and Natalie M. Mahowald. (2020). Impact of Changes to the Atmospheric Soluble Iron Deposition Flux on Ocean Biogeochemical Cycles in the Anthropocene. Global Biogeochemical Cycles. https://doi.org/10.1029/2019GB006448
Link(s) to Related Publication(s)
Rights
Attribution 4.0 International
Rights URI
Type
dataset
Accessibility Hazard
none
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution 4.0 International