eCommons

 

Efficient Location-Aware Node And Object Discovery In Large-Scale Networks

Other Titles

Abstract

The performance of many distributed systems is highly sensitive to the latency of finding objects in response to user requests. Efficient discovery of nodes and objects in the network that satisfy application-specific requirements is therefore a critical building block for many distributed systems. In this thesis, I introduce a space-based approach to solving node and object discovery problems. This approach represents the relationship between nodes and objects as distances in an abstract space, maps optimization objectives and constraints of the problem to regions in the space, and combines these regions to identify the solution to the discovery problem. Using the space-based approach, I address three common problems involving node and object discovery. First, I tackle the problem of efficiently discovering nodes with specific network latency characteristics, such as finding the closest server node to a target. This problem is commonly encountered in content distribution networks, online games, and other network services that demand low latency. I describe a system, called Meridian, that uses overlay routing in a small-world inspired network to solve such problems efficiently and accurately. Second, I address the decentralized approximate search problem, where the objective is to efficiently scan an online database for the set of objects that are most similar to given search terms. I describe the Cubit system, which provides a fully decentralized and efficient approximate search primitive for peer-to-peer systems. Finally, I solve the problem of accurately determining the physical location of Internet hosts and describe the Octant system, which uses a novel geometric technique to determine a target node's location from constraints extracted from network measurements. I characterize the performance and accuracy of these systems with data and evaluations drawn from deployments on PlanetLab and end-user systems. The results show that these space-based systems are accurate, efficient and scalable.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2011-08-31

Publisher

Keywords

Distributed systems; Networking; Localization

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Sirer, Emin G.

Committee Co-Chair

Committee Member

Delchamps, David Forbes
Tardos, Eva

Degree Discipline

Computer Science

Degree Name

Ph. D., Computer Science

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record