
EFFICIENT LOCATION-AWARE NODE AND
OBJECT DISCOVERY IN LARGE-SCALE

NETWORKS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Bernard Wong

August 2011

c© 2011 Bernard Wong

ALL RIGHTS RESERVED

EFFICIENT LOCATION-AWARE NODE AND OBJECT DISCOVERY IN

LARGE-SCALE NETWORKS

Bernard Wong, Ph.D.

Cornell University 2011

The performance of many distributed systems is highly sensitive to the la-

tency of finding objects in response to user requests. Efficient discovery of nodes

and objects in the network that satisfy application-specific requirements is there-

fore a critical building block for many distributed systems.

In this thesis, I introduce a space-based approach to solving node and object

discovery problems. This approach represents the relationship between nodes

and objects as distances in an abstract space, maps optimization objectives and

constraints of the problem to regions in the space, and combines these regions to

identify the solution to the discovery problem. Using the space-based approach,

I address three common problems involving node and object discovery.

First, I tackle the problem of efficiently discovering nodes with specific net-

work latency characteristics, such as finding the closest server node to a target.

This problem is commonly encountered in content distribution networks, on-

line games, and other network services that demand low latency. I describe

a system, called Meridian, that uses overlay routing in a small-world inspired

network to solve such problems efficiently and accurately.

Second, I address the decentralized approximate search problem, where the

objective is to efficiently scan an online database for the set of objects that are

most similar to given search terms. I describe the Cubit system, which provides

a fully decentralized and efficient approximate search primitive for peer-to-peer

systems.

Finally, I solve the problem of accurately determining the physical location

of Internet hosts and describe the Octant system, which uses a novel geometric

technique to determine a target node’s location from constraints extracted from

network measurements.

I characterize the performance and accuracy of these systems with data and

evaluations drawn from deployments on PlanetLab and end-user systems. The

results show that these space-based systems are accurate, efficient and scalable.

BIOGRAPHICAL SKETCH

Bernard was born in Hong Kong and raised in Toronto, Canada. He received

his Bachelor of Applied Science in Computer Engineering from the University

of Waterloo in 2003. His interest in distributed systems led to graduate work

with his advisor Emin Gün Sirer at Cornell University, where he received his

Master of Science in Computer Science in 2007 and his Doctor of Philosophy in

Computer Science in 2011.

iii

This thesis is dedicated to my parents. Their love and support was what made

this possible.

iv

ACKNOWLEDGEMENTS

I want to thank the many people that played pivotal roles during my doc-

toral studies and helped shape me into the researcher and person that I am

today.

I especially want to thank my Ph.D advisor, Emin Gün Sirer. My words here

can only understate my gratitude for the guidance and advice he has given me

over my tenure at Cornell. His enthusiasm, energy, and stubborn unwillingness

to accept second best were instrumental in motivating me to pursue every idea,

build and deploy lots of systems, and become a well-rounded researcher.

I would also like to thank my thesis committee members, Eva Tardos and

David Delchamps, and the many researchers and professors I have closely in-

teracted or collaborated with, namely, Aleksandrs Slivkins, Bruce Maggs, David

Lie, Paul Francis, Ravi Jain, Robbert van Renesse, Fred Schneider, and Hakim

Weatherspoon. I have enjoyed every discussion I have had with them and their

encouragement, advice, and insightful comments have greatly broadened my

research perspective. I am very grateful to have had them as additional men-

tors during my doctoral studies.

I also had the good fortune to collaborate closely with a number of amazing

students. I would like to thank Nicole Caruso, Phillipa Gill, Ivan Stoyanov,

Tushar Arora, Renato Fischer, Robert Escriva, and Ji Yong Shin. I benefited

greatly from these collaborations, and I hope I was able to leave a similar impact

on their graduate studies.

My years at Cornell would not have been the same without my colleagues

in the Systems Lab. I would like to thank Deniz Altinbuken, Willem de Bruijn,

Mahesh Balakrishnan, Hitesh Ballani, Tuan Cao, Nicole Caruso, Robert Es-

criva, Saikat Guha, Qi Huang, Oliver Kennedy, Jed Liu, Ryan Peterson, Patrick

v

Reynolds, Alan Shieh, Robert Surton, Vidhyashankar Venkataraman, Vivek

Vishnumurthy, and Dan Williams for making the lab bearable in the depths of

Ithaca’s dark and dreary winters.

Finally, I would like to thank my parents. Their unwavering love and sup-

port throughout my life was what made this and everything else in my life pos-

sible.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Figures . ix

1 Introduction 1
1.1 Network-Aware Node Discovery 2
1.2 Approximate Keyword Matching 6
1.3 Geolocalization of Internet Hosts 9
1.4 Deployment Summary . 13
1.5 Outline . 14

2 Network Location-Aware Node Selection 16
2.1 Framework . 17

2.1.1 Multi-Resolution Rings . 17
2.1.2 Ring Membership Management 18
2.1.3 Gossip Based Node Discovery 21
2.1.4 Maintenance Overhead . 22

2.2 Applications . 23
2.2.1 Closest Node Discovery . 23
2.2.2 Central Leader Election . 25
2.2.3 Multi-Constraint System . 27

2.3 Meridian Query Language . 29
2.4 ClosestNode.com: A General-Purpose Deployment 32
2.5 Evaluation . 34

2.5.1 Simulation . 34
2.5.2 Physical Deployment . 46
2.5.3 Application Performance 47

2.6 Summary . 49

3 Approximate Matching for Peer-to-Peer Overlays 51
3.1 Approach . 52

3.1.1 Keyword Space . 52
3.1.2 Multi-Keyword Matching 54
3.1.3 Node ID Assignment . 55
3.1.4 Navigation . 56

3.2 Framework . 56
3.2.1 Multi-Resolution Rings . 57
3.2.2 Ring Membership Management 58
3.2.3 Gossip Based Node Discovery 59
3.2.4 Replication Management 59

vii

3.2.5 Load Balancing . 61
3.3 Query Routing . 63

3.3.1 Object Insert . 63
3.3.2 Search Protocol . 63
3.3.3 Boolean Queries . 66
3.3.4 Node Join . 67
3.3.5 Security . 68

3.4 Evaluation . 70
3.4.1 Simulation . 70
3.4.2 Azureus Deployment . 82

3.5 Summary . 83

4 Geographic location of Internet hosts 84
4.1 Framework . 84

4.1.1 Mapping Latencies to Distances 90
4.1.2 Last Hop Delays . 93
4.1.3 Indirect Routes . 97
4.1.4 Handling Uncertainty . 98
4.1.5 Iterative Refinement . 100
4.1.6 Geographical Constraints 102
4.1.7 Point Selection . 103

4.2 Implementation . 104
4.3 Evaluation . 105
4.4 Summary . 116

5 Related Work 117
5.1 Network Location-Aware Node Selection 117

5.1.1 Network Embedding . 117
5.1.2 Server Selection . 120

5.2 Decentralized Approximate Keyword Matching 122
5.2.1 Routing in overlay networks 122
5.2.2 Approximate matching . 123

5.3 Geolocalization of Internet Hosts 125
5.3.1 Single-Point Localization 126
5.3.2 Region Localization . 128
5.3.3 Geolocalization Security . 130

6 Future Directions and Summary 131

A k-Closest Node Discovery in MQL 135

Bibliography 138

viii

LIST OF FIGURES

2.1 Concentric rings for organizing peers in Meridian. 19
2.2 Illustration of closest node discovery. 24
2.3 Illustration of central leader election. 26
2.4 Illustration of a multi-constraint system. 28
2.5 Local system functions in the MQL library. 31
2.6 Remote system functions in the MQL library. 31
2.7 The closest node discovery protocol in MQL. 32
2.8 Absolute closest node discovery error and embedding error. . . . 36
2.9 CDF of relative closest node discovery error. 36
2.10 Nodes per ring vs. error and query latency for closest node dis-

covery. 37
2.11 Constant β vs. error and query latency for closest node discovery. 37
2.12 System size vs. error and query latency for closest node discovery. 39
2.13 System size vs. per query load for closest node discovery. 39
2.14 CDF of in-degree ratio. 40
2.15 Central leader election accuracy. 40
2.16 Percentage of successful multi-constraint queries. 41
2.17 Nodes per ring vs. failure percentage and query latency for

multi-constraint queries. 41
2.18 System size vs. failure percentage and query latency for multi-

constraint queries. 42
2.19 Relative error of closest node discovery on PlanetLab and in sim-

ulation. 46
2.20 Page fetch latency for a CDN using ClosestNode.com and ran-

dom selection. 49

3.1 Edit-distance between keywords in the Netflix data-set. 53
3.2 Illustration of the edit distance between keywords. 54
3.3 Concentric rings for organizing peers in Cubit. 57
3.4 Illustration of load-balancing of popular keywords. 62
3.5 Illustration of Cubit’s search protocol. 65
3.6 Error probability per character vs. accuracy. 71
3.7 Number of RPC requests per query and the fraction of successful

queries. 73
3.8 Number of nodes vs. accuracy and the number of RPC requests

per query. 74
3.9 Number of objects in the system vs. fraction of successful queries

using the CiteSeer dataset. 75
3.10 Number of nodes per ring vs. accuracy and the number of RPC

requests per query. 76
3.11 Search fanout vs. accuracy and the number of RPC requests per

query. 78

ix

3.12 Replication vs. accuracy. 79
3.13 Relative change in accuracy due to churn. 80
3.14 Offload fanout vs. load at hotspots. 81
3.15 Error probability per character vs. the accuracy in the Azureus

deployment. 82

4.1 Location representation in Octant 85
4.2 Comprehensive use of positive and negative constraints 86
4.3 Combining positive and negative information. 87
4.4 Latency-to-distance plot of peer landmarks. 91
4.5 Illustration of the height metric. 96
4.6 Illustration of piecewise localization. 99
4.7 Illustration of using city constraints. 102
4.8 CDF of accuracy on the PlanetLab dataset. 106
4.9 Number of landmarks vs. the percentage of targets inside the

estimate location region. 107
4.10 Number of landmarks vs. the area of the estimated location region.108
4.11 Number of landmarks vs. accuracy. 109
4.12 CDF of the contributions of individual optimizations in Octant. . 110
4.13 Percentage of targets located within their estimated location re-

gions. 112
4.14 Area of the estimated location region with demographic and ge-

ographic constraints. 113
4.15 CDF of accuracy on the public traceroute servers dataset. 115

x

CHAPTER 1

INTRODUCTION

Node and object discovery, that is, locating nodes and objects that meet

application-specific requirements, is a critical building block for many dis-

tributed systems. For instance, the performance of large-scale content distribu-

tion networks relies on directing traffic through servers that have low latencies

to clients. Similarly, online services must be able to quickly locate user-specific

data in the cloud in order to service time-critical user requests, with data re-

trieval performance often determining the quality of the user experience. Lastly,

discovering the geographic location of clients enables advertisers to serve geo-

graphically relevant content to their clients. These examples illustrate the ubiq-

uity of node and object discovery problems in today’s applications and services.

In this thesis, I will introduce three systems that address problems in node

and object discovery common to many real-world applications and services.

The first is Meridian, a system for performing efficient latency-aware node dis-

covery, with applications in high performance content delivery as well as many

other domains where latency-based node selection plays a role. The second is

Cubit, a system for performing accurate, efficient and scalable distributed key-

word search that can discover objects with keywords that are close to the search

keyword; a capability that addresses the search demands of decentralized con-

tent distribution networks. Finally, I will introduce Octant, a system for accu-

rately discovering the geographical location of Internet hosts.

These systems share a common space-based approach: they represent the rela-

tionship between the nodes and objects as distance in an abstract space, map the

optimization objectives and constraints of the problem as regions in the space,

1

and combine these regions to identify the solution regions that correspond to

solutions to the problem. Given the solution regions, the systems perform ad-

ditional problem-specific operations to fully address their respective problems.

For example, in latency-aware node discovery, the system must also efficiently

discover the nodes that are closest to or within the solution regions. In the next

sections, I describe, in turn, the three problems addressed in the thesis, provide

the context for the problems and outline the solution strategies, centered on a

space-based approach, for solving each of these problems. I describe the con-

crete systems built based on these strategies.

1.1 Network-Aware Node Discovery

The performance and feasibility of a large-scale service often hinge on its ability

to effectively make use of the location of the nodes in the network in its con-

struction and core operations. Services such as content distribution networks

and multi-player online games can reduce user-perceived latencies by serving

clients from nearby servers and grouping nearby players to the same game in-

stance, respectively.

A precise and compact description of a node’s location that captures impor-

tant network dynamics, such as network latencies to other nodes in the net-

work, in a large-scale network is therefore critically important to these services.

However, such a description is surprisingly difficult to implement in practice.

A description based on the node’s physical location, such as its position on the

globe, is compact but fails to capture any network specific details, such as con-

gestion or topology, providing only a coarse-gain estimate of latencies between

nodes. A detailed description of a node that includes its network connectivity

2

information is precise, but it is also cumbersome to manage, update and use,

and it still fails to capture the effects of network dynamics, such as congestion

and routing delays, on network latencies.

To address the limitations of these simple node location descriptions, there

have been significant efforts [69, 25] towards embedding network latencies into

simple virtual spaces, such as Euclidean spaces and spherical surfaces, that de-

scribe the network locations of nodes as positions in the virtual spaces. These

systems, known collectively as Virtual Coordinates, assign coordinates, which

represent positions, to nodes based on a small number of latency measurements

among these nodes. A distance function can then compute the estimated latency

between any two nodes based on their coordinates, but at the cost of significant

embedding errors. Some of these coordinate systems also exhibit unusual long-

term behaviors, such as constant rotation and expansion of the virtual space,

leading to instabilities in real deployments [54].

In this thesis, I present Meridian, a new framework for performing scal-

able, efficient, and accurate node discovery based on network locations. Unlike

Virtual Coordinate systems that must first embed latencies into simple virtual

spaces, Meridian uses the latencies directly to perform node discovery. A node’s

location in Meridian is instead defined relative to its latency to other nodes in

the system. This intuitive location definition is equivalent to defining a node’s

position in respect to the latency space, an abstract space encapsulating all nodes

in the network with network latency used as the distance between node pairs.

The latency space enables disparate node discovery problems to be represented

in a uniform way.

Following the space-based approach to solving node and object discovery

3

problems, Meridian maps node discovery constraints and optimization objec-

tives to regions in the latency space, which together, define a solution region.

Given this representation of the problem, the goal of node discovery is to find

nodes that are within or closest to the solution region in the latency space. A

centralized server with access to the inter-node latencies for all nodes in the

network can quickly and easily accomplish this goal. However, centralized ap-

proaches entail significant overhead in large-scale networks, requiring the cen-

tral entity to measure and track O(N2) latencies.

The Meridian framework instead takes a distributed approach to node dis-

covery. In lieu of referencing a centralized repository to find nodes within or

near the solution region, Meridian creates a loosely-structured overlay network

that facilitates the discovery of a multi-hop path towards the solution region

without requiring global information or coordination. Each Meridian node se-

lects O(log N) other nodes in the network as its overlay peers, with the distances

to the peers conforming to a small-world [49] inspired distribution. This peer

selection criteria ensures that each Meridian node is an expert of its own region

of space, with exponentially fewer peers that are further away. Navigating the

overlay involves nodes handing off discovery requests to the peers that are clos-

est to the solution region. Each query hand-off delivers the discovery request

to a node with peers that, due to the overlay structure, are closer to solution

region than the previous node’s peers, facilitating the discovery of additional

hand-offs. Both theoretical and empirical results show that the Meridian nav-

igation protocol converges to a node that is closest to or within the solution

region in O(log D) hops, where D is the diameter of the latency space, with high

probability.

4

To completely eliminate the dependence on centralized latency repositories

or embedding-based latency prediction, Meridian performs direct latency mea-

surements to satisfy the main requirement of its navigation protocol, namely,

determining which peer to forward a discovery request off to. Using direct mea-

surements allows Meridian to avoid embedding errors without large centraliza-

tion overhead. A naive approach to determining the closest peer to the solution

region is to request latency measurements from every peer. The Meridian frame-

work can significantly reduce the number of required latency measurements by

pruning peers that are unlikely to be the closest to the solution region. This op-

timization reduces Meridian’s measurement overhead without affecting node

discovery accuracy.

I evaluate Meridian in both a PlanetLab deployment, and in simulations.

Compared to previous approaches based on virtual coordinates, Meridian can

solve node discovery problems with an order-of-magnitude less error. In the

median, Meridian is able to find the closest node in a global DNS server dataset

with less than one millisecond error. This is in contrast to Virtual Coordinate

systems that exhibit errors on the order of tens of milliseconds. Meridian is also

scalable, requiring network traffic that grows logarithmically with the system

size in order to maintain the loosely structured overlay. Finally, Meridian is

resilient to system dynamics, with long-term deployments that do not exhibit

the stability problems found in virtual coordinate systems.

5

1.2 Approximate Keyword Matching

Efficient keyword search is an essential primitive for many large-scale dis-

tributed systems, and exact keyword lookup, a specific instance of the keyword

search problem, has been the subject of much previous work [78, 91, 106, 76, 62,

45]. However, exact keyword lookups are only marginally effective in applica-

tions that accept user contributed content and search queries, such as peer-to-

peer content distribution networks, as keywords are not vetted for correctness

or uniformity. Common variations and misspellings of the keywords will lead

to partial or empty search results. Instead, approximate keyword matching, that is,

discovering the set of objects whose keywords are close but not identical to the

search keyword, is needed to meet the search demands found in unsupervised

environments.

Naive approaches to layer approximate keyword matching on top of an ex-

act distributed keyword lookup system, by inserting each object under all pos-

sible key variations or issuing queries in parallel with all variants of the search

key, lead to highly inefficient solutions. A variation of this approach is to prepro-

cess keywords with Soundex [105], an algorithm for indexing names by sound,

groups similar sounding keywords together into a more general keyword for in-

sertion and retrieval. This grouping enables limited retrieval of non-exact key-

word matches, but is only effective for phonetic variations of keywords.

An alternative approach to performing approximate keyword matching is

to forgo the efficiency of exact distributed lookup systems and instead build

on top of unstructured peer-to-peer systems, such as Gnutella, which provide

a general search primitive based on query broadcast. Nodes in these systems

6

scan through their entire local data repository for data that match each search

request. Replacing the matching mechanism with one based on a fuzzy simi-

larity metric would therefore yield approximate matches. Such broadcast-based

approaches are accurate but not scalable to large deployments, as they may take

up to N hops in the worst case, where N is the number of hosts, and place a su-

perlinear aggregate load on the network.

In this thesis, I present Cubit, a scalable peer-to-peer system based on the

space-based framework that forms the core of this thesis. The central insight

in Cubit is the creation of a keyword space, using edit-distance as the distance

function, that captures the relative similarity of keywords and encapsulates both

the keywords and node identifiers in the system. Cubit assigns objects to their

closest nodes, where distance is a measure of the edit-distance between the ob-

ject’s keywords and the node’s identifier. This effectively partitions the keyword

space, with each partition centered on a node and representing the region that

is closer to this node than any other node in the system, known as the node’s

authoritative region; each node is responsible for storing and retrieving all ob-

jects residing in its authoritative region. The keyword space and the partition-

ing of the space into authoritative regions enable common approximate search

queries, such as finding all objects with keywords within one edit-distance of

the search keyword, to be represented as a search region, and require only dis-

covering and contacting nodes with authoritative regions that overlap or reside

within the search region.

Much like Meridian, Cubit nodes keep track of O(log N) peers in a small-

world inspired distribution in the keyword space. This ensures that Cubit nodes

have authoritative knowledge about their local regions and have sufficient out-

7

pointers to retrieve information from more authoritative nodes in other regions.

For each search query, a Cubit node first examines its peers, selecting those that

are in the solution region or are closer to the solution region than itself. It then

retrieves from each selected peer additional candidate nodes that meet the same

criteria relative to the peer. The search is repeated with these new candidates

that have more information in the proximity of the solution region than the

previous selected peers.

As user-submitted search queries typically consist of multiple keywords,

Cubit supports a multi-word similarity metric for matching search queries to

objects. Cubit also supports combining keywords using user-specified boolean

operators, enabling users to precisely define their search queries. This is done

efficiently by leveraging probabilistic data-structures to represent, disseminate,

and operate on relatively large intermediate result sets with low, constant size

overheads.

Providing practical object storage and discovery requires that Cubit handle

challenges in object availability and non-uniform search patterns. Objects in Cu-

bit are replicated to the k closest nodes to the object, where k is a system defined

parameter, to ensure that objects persist in the presence of node failures. Cubit

also introduces a novel load-balancing mechanism to offload query request load

for nodes that are responsible for popular objects.

I evaluate Cubit through both a real deployment in a search plugin for

Azureus, a popular BitTorrent client, and large-scale simulations. Cubit out-

performs approaches that layer approximate matching on top of exact lookup

systems, requiring an order-of-magnitude fewer network operations than the

naive approach of searching for all possible variations in parallel, and can suc-

8

cessfully answer 30% more queries than systems that preprocess keywords and

search terms with Soundex. In particular, Cubit can place the target object in the

top 20 search results for more than 94% of the queries even with a high degree

of perturbation to the terms in the search queries.

1.3 Geolocalization of Internet Hosts

Discovering the geographic location of nodes, commonly known as geolocaliza-

tion, is crucial to the success of many online services. Knowing the geographic

location of nodes enables serving customized content to clients, simplifies net-

work management, and improves the fidelity of network diagnosis. Accurately

determining the geographic location of a node, however, is difficult as IP ad-

dresses do not embed any physical location information; their method of as-

signment only facilitates efficient network routing.

Past approaches to geolocalization are primarily based on either mining reg-

istration databases for IP address to location associations, or multilateration, a

technique similar to triangulation, using network latency measurements.

Registration databases, such as the WHOIS database or user profile

databases from online services, contain data that associate IP addresses with

user-submitted physical locations. However, the accuracy of the user-submitted

data is suspect; users may not want to disclose their real locations or may want

to associate their IP addresses with the location of their businesses rather than

the location of their servers. Furthermore, the number of IP addresses in these

databases covers only a small fraction of the public IP address space. Additional

ad-hoc techniques must be used to extend the IP address space coverage by clus-

9

tering IP addresses that may be in nearby locations, which introduce additional

geolocalization inaccuracies.

Multilateration, commonly used in radar-based navigation systems, com-

putes the location of a target based on its latency to three or more known land-

marks. Measurements from each landmark create feasibility regions, in the shape

of disks centered at each landmark, that bound where the targets can be located;

the distance a measurement probe travels determines the radius of the feasibil-

ity region. Multilateration can locate targets to exact positions if the measure-

ment probes travel at a uniform speed via direct great-circle paths between the

landmarks and targets. However, this criteria is not satisfied in wired networks

due to circuitous packet routing and arbitrary queuing delays at intermediate

routers. These non-ideal network properties increase measured latencies and

create feasibility regions that are far larger than necessary to enclose the targets.

Practical systems based on multilateration can therefore only locate targets to

large geographic regions by taking the intersection of very conservative feasi-

bility regions.

In this thesis, I present Octant, a novel framework for accurate and precise

geolocalization. Octant provides an intuitive and generic framework that rep-

resents constraints, which specify where nodes may or may not be located, as

precise geometric regions. Nearly all previous geolocalization approaches can

be expressed in terms of these geometric regions and can be incorporated into

the framework. The introduction of constraints that exclude geometric regions,

known as negative constraints, enables Octant to extract additional information

from network measurements. Octant maps nodes to small regions on the globe

by solving a system of of geometric constraints. These regions encompass the

10

nodes’ actual locations with high probability.

Unlike the other node and object discovery problems described earlier in

this thesis, where the constraints are specified in terms of the distance metric of

an abstract space (such as latency and edit-distance), most geolocalization con-

straints are specified in terms of latencies that must be mapped to geographical

distances. Performing this mapping accurately is challenging due to uncertain-

ties introduced by network congestion, indirect routes, and inelastic delays at

the last hop.

The Octant framework introduces several novel techniques to limit the ef-

fects of these real-world obstacles to geolocalization. These techniques enable

the extraction of constraints that are an order of magnitude tighter and more

precise than past work. For example, Octant makes use of past measurements

between landmarks to generate latency to distance mappings tailored to indi-

vidual landmarks and latency ranges. These mappings are used in place of ide-

alized transmission models and take into account persistent inflation in laten-

cies seen at specific landmarks. Octant also minimizes the impact of circuitous

routing, where packets take paths that significantly deviate from the direct

great-circle paths, by breaking paths into straight-line segments. The routers at

the end of each segment are geolocalized in turn from the landmarks, with the

router from the previous segment used to localize the next router. This piece-

wise localization can compensate for the delays introduced by indirect routes.

Finally, poor last-mile connectivity from the Internet backbone to end users re-

sults in last-hop latency dilations that are independent of the geographical dis-

tance. Octant captures these inelastic delays separately as an extra “height” di-

mension in the latency to distance mapping, ensuring that constraints derived

11

from latencies are unaffected by these delays.

Octant can also incorporate additional constraints from non-latency sources

to further refine the geolocalization. For example, geographic and demographic

information can derive constraints that eliminate bodies of water that are un-

likely to contain the target. Constraints can also be derived from the DNS names

of routers that often embed geographic information. By representing constraints

as geometric regions, Octant can seamlessly combine all of the available geo-

graphic information geometrically to geolocalize a target.

Octant follows the space-based approach by incorporating the different con-

straints into a feasibility region containing the geolocalization target. However,

with the many avenues to extract geographic constraints, there is a high proba-

bility that some of these constraints are erroneous. To address this issue, Octant

introduces a weight assignment mechanism to characterize the confidence of

different constraints. A constraint’s weight amplifies or dampens its contribu-

tion by estimating the location region of the node of interest. By incorporating

weights in the constraint satisfaction process, Octant not only yields the set of

feasible points where the node can potentially lie, but also the associated prob-

ability for the node residing at each point.

These techniques and mechanisms for extracting precise constraints from

the network, for integrating constraints from non-latency data-sources, and for

handling different sources of error and imprecision, allow Octant to approach

the limits of geolocalization accuracy in wired networks between uncoordinated

and unsynchronized hosts. In our PlanetLab deployment, Octant can geolocal-

ize nodes in the U.S. within 22 miles of their actual locations in the median. This

result is more than three times better than the previous state-of-the-art.

12

1.4 Deployment Summary

My work has looked at several common problems concerning node and object

discovery that motivated the development of three large-scale and reliable dis-

tributed systems. These systems address real user demands and have produced

implementations and live deployments that are useful to other researchers as

well as general end-users.

The Meridian framework has been adopted by a number of different online

services and serves as the primary alternative to virtual coordinates for solving

latency-aware node discovery problems. For example, it is used in CobWeb, a

large-scale decentralized content distribution network, to minimize latency by

directing users to their closest CobWeb nodes. It is deployed in Burrow [48],

a wide-area virtual private network, for assigning clients to their closest net-

work gateway nodes. Meridian serves as the node selection mechanism in

large-scale DNS redirection services, such as OASIS and ClosestNode.com, that

alter their domain name to IP mappings based Meridian’s node discovery re-

sults 1. Beyond providing client to server mapping services, Meridian is used

in the construction of locality-aware overlay networks [81, 82] that minimize

high-latency overlay links. Meridian showed that, for many applications, the

latency-prediction primitive offered by virtual coordinate systems is unneces-

sary and introduces significant inaccuracies compared to Meridian’s approach

based on direct measurements.

Cubit was implemented as a plug-in for Azureus, a popular BitTorrent client,

where it was amongst the first fully decentralized search services for BitTorrent,

1The original implementation of OASIS was based on virtual coordinates. However, due to
poor prediction accuracy, OASIS was re-implemented to use Meridian for node discovery.

13

and is still the only decentralized search service to provide approximate key-

word search with complete coverage of the nodes in the network.

Octant has garnered significant interest in both the academic community and

in industry. It has been used as the basis for work in determining the vulnerabil-

ity of state-of-the-art network-measurement based geolocalization systems [36].

The techniques in Octant are also used in Alidade, a project I helped start in col-

laboration with Akamai Technologies. Alidade has two main goals: to extend

the scalability of the Octant framework by refactoring the system into a series

of Map/Reduce [28] stages, and to build a framework that uses passive back-

ground measurements collected by the Akamai content distribution network,

rather than use active measurement probes.

Having impact on end-users and other researchers through the use and

adoption of my work was one of the primary goals for implementing and de-

ploying these systems. The feedback and data collected from these deploy-

ments have also been invaluable in improving the design of the systems to more

closely reflect the needs of end-users and the research community.

1.5 Outline

The following chapters describe the contributions of this thesis in detail. Chap-

ter 2 presents Meridian, a system for discovering nodes based on their net-

work location. Chapter 3 describes the problem of performing decentralized

object discovery based on approximate keyword matching and presents Cubit,

a system using the space-based approach to address this problem. Chapter 4

presents Octant, a system for performing accurate geolocalization of Internet

14

hosts. Chapter 5 provides a summary of work related to the topics discussed in

this thesis. Finally, Chapter 6 summarizes the contributions of this thesis and

outlines future directions.

15

CHAPTER 2

NETWORK LOCATION-AWARE NODE SELECTION

Selecting nodes based on their location in the network is a basic building

block for many high-performance distributed systems. In small systems, it

is possible to perform extensive measurements and make decisions based on

global information. For instance, in an online game with few servers, a client

can simply measure its latency to all servers and bind to the closest one for

minimal response time. However, collecting global information is infeasible

for a significant set of recently emerging large-scale distributed applications,

where global information is unwieldy and lack of centralized servers makes it

difficult to find nodes that fit selection criteria. Yet many distributed applica-

tions, such as filesharing networks, content distribution networks, backup sys-

tems, anonymous communication networks, pub-sub systems, discovery ser-

vices, and multi-player online games could benefit substantially from selecting

nodes based on their location in the network.

This chapter introduces a lightweight, scalable and accurate framework,

called Meridian, for performing node selection based on network location 1.

Meridian forms a loosely-structured overlay network, uses direct latency mea-

surements instead of latency estimates from virtual coordinates, and can solve

spatial queries without an absolute coordinate space. Meridian provides the

general framework for solving frequently encountered location-related prob-

lems in distributed systems. Specifically, this thesis examines how Meridian can

be used to efficiently find the closest node to a target, the latency minimizing

1We use the term “location” to refer to a node’s placement in the Internet as defined by its
round-trip latency to other nodes. While Meridian does not assume that there is a well-defined
location for any node, our illustrations depict a single point in a two-dimensional space for
clarity.

16

node to a given set of nodes, and the set of nodes that lie in a region defined by

latency constraints. Although it is strictly less general than virtual coordinates,

we show that Meridian incurs significantly less error. Empirical results from

both simulations parameterized with measurements from a large-scale network

study and a PlanetLab deployment show that Meridian is an order of magnitude

more accurate than virtual coordinates based systems in performing location-

aware node selection. Theoretical analyses of Meridian [101, 87] corroberate

these results and show that Meridian provides robust performance, high scala-

bility and good load balance when deployed in metric spaces that closely model

Internet latencies.

2.1 Framework

The basic Meridian framework is based around three mechanisms: a loose rout-

ing system based on multi-resolution rings on each node, an adaptive ring mem-

bership replacement scheme that maximizes the usefulness of the nodes popu-

lating each ring, and a gossip protocol for node discovery and dissemination.

2.1.1 Multi-Resolution Rings

Each Meridian node keeps track of a small, fixed number of other nodes in the

system, and organizes this list of peers into concentric, non-overlapping rings.

The ith ring has inner radius ri = αsi−1 and outer radius Ri = αsi, for i > 0, where

α is a constant, s is the multiplicative increase factor, and r0 = 0, R0 = α for the

innermost ring. Each node keeps track of a finite number of rings; all rings i > i∗

for a system-wide constant i∗ are collapsed into a single, outermost ring that

17

spans the range [αsi∗ ,∞].

Meridian nodes measure the distance d j to a peer j, and place that peer in the

corresponding ring i such that ri < d j ≤ Ri. This sorting of neighbors into concen-

tric rings is performed independently at each node and requires no fixed land-

marks or distributed coordination. Each node keeps track of at most k nodes in

each ring and drops peers from overpopulated rings. Consequently, Meridian’s

space requirement per node is proportional to k.

The ring structure, with its exponentially increasing ring radii, favors nearby

neighbors and enables each node to retain a relatively large number of pointers

to nodes in their immediate vicinity. This allows a node to authoritatively an-

swer geographic queries for its region of the network. At the same time, the

ring structure ensures that each node retains a sufficient number of pointers to

remote regions, and can therefore dispatch queries towards nodes that special-

ize in those regions. An exponentially increasing radius also makes the total

number of rings per node manageably small and i∗ clamps it at a constant.

2.1.2 Ring Membership Management

The number of nodes per ring, k, represents an inherent tradeoff between accu-

racy and overhead. A large k increases a node’s information about its peers and

helps it make better choices when routing queries. On the other hand, a large k

also entails more state, more memory and more bandwidth at each node.

Within a given ring, node choice can have a significant effect on the perfor-

mance of the system. A set of ring members that are geographically distributed

18

Figure 2.1: Each Meridian node keeps track of a fixed number of
other nodes and organizes these nodes into concentric, non-
overlapping rings of exponentially increasing radii.

provides much greater utility than a set of ring members that are clustered to-

gether, as shown in Figure 2.1. Intuitively, nodes that are geographically di-

verse instead of clustered together enable a node to reach a larger portion of

the network efficiently. Consequently, Meridian strives to promote geographic

diversity within each ring.

Meridian achieves geographic diversity by periodically reassessing ring

membership decisions and replacing ring members with alternatives that pro-

vide greater diversity. Within each ring, a Meridian node not only keeps track

of the k primary ring members, but also a constant number l of secondary ring

members, which serve as a FIFO pool of candidates for primary ring member-

ship.

We quantify geographic diversity through the hypervolume of the k-

polytope formed by the selected nodes. To compute the hypervolume, each

19

node defines a local, non-exported coordinate space. A node i will periodically

measure its distance di
j to another node j in the same ring, for all 0 ≤ i, j ≤ k + l.

The coordinates of node i consist of the tuple 〈di
1, d

i
2, ..., d

i
k+l〉, where di

i = 0.

This embedding is trivial to construct and does not require a potentially error-

introducing mapping from high-dimensional data to a lower number of dimen-

sions.

Having computed the coordinates for all of its members in a ring, Meridian

nodes then determine the subset of k nodes that provide the polytope with the

largest hypervolume. For small k, it is possible to determine the maximal hy-

pervolume polytope by considering all possible polytopes from the set of k + l

nodes. For large k + l, evaluating all subsets is infeasible. Instead, Meridian

uses a greedy algorithm: A node starts out with the k + l polytope, and itera-

tively drops the vertex (and corresponding dimension) whose absence leads to

the smallest reduction in hypervolume until k vertices remain. The remaining

vertices are designated the new primary members for that ring, while the re-

maining l nodes become secondaries. This computation can be performed in

linear time using standard computational geometry tools [10]. The ring mem-

bership management occurs in the background and its latency is not critical to

the correct operation of Meridian. Note that the coordinates computed for ring

member selection are used only to select a diverse set of ring members; they are

not exported by Meridian nodes and play no role in query routing.

Churn in the system can be handled gracefully by the ring membership man-

agement system due to the loose structure of the Meridian overlay. If a node

is discovered to be unreachable during the replacement process, it is dropped

from the ring and removed as a secondary candidate. If a peer node is discov-

20

ered to be unreachable during gossip or the actual query routing, it is removed

from the ring, and replaced with a random secondary candidate node. The qual-

ity of the ring set may suffer temporarily, but will be corrected by the next ring

replacement. Discovering a peer node failure during query routing can reduce

query performance; k can be increased to compensate for this expected rate of

failure.

2.1.3 Gossip Based Node Discovery

The use of a gossip protocol to perform node discovery allows the Meridian

overlay to be loosely connected, highly robust and inexpensively kept up-to-

date of membership changes. This gossip protocol is based on an anti-entropy

push protocol [29] that implements a membership service. The central goal of

our gossip protocol is for each node to discover and maintain a small set of

pointers to a sufficiently diverse set of nodes in the network. Our gossip proto-

col works as follows:

1. Each node A randomly picks a node B from each of its rings and sends a gossip

packet to B containing a randomly chosen node from each of its rings.

2. On receiving the packet, node B determines through direct probes its latency to

A and to each of the nodes contained in the gossip packet from A.

3. After sending a gossip packet to a node in each of its rings, node A waits until the

start of its next gossip period and then begins again from step 1.

In step 2, node B sends probes to A and to the nodes in the gossip packet

from A regardless of whether B has already discovered these nodes. This re-

pinging ensures that stale latency information is updated, as latency between

21

nodes on the Internet can change dynamically. The newly discovered nodes are

placed on B’s rings as secondary members.

For a node to initially join the system, it needs to know the IP address of

one of the nodes in the Meridian overlay. The newly joining node contacts the

Meridian node and acquires its entire list of ring members. It then measures its

latency to these nodes and places them on its own rings; these nodes will likely

be binned into different rings on the newly joining node. From there, the new

node participates in the gossip protocol as usual.

The period between gossip cycles is initially set to a small value in order for

new nodes to quickly propagate their arrival to the existing nodes. The new

nodes gradually increase their gossip period to the same length as the existing

nodes. The choice of a gossip period depends on the expected rate of latency

change between nodes and expected churn in the system.

2.1.4 Maintenance Overhead

The average bandwidth overhead to maintain the multi-resolution rings of a

Meridian node is modest. The number of gossip packets a node receives is equal

to the number of neighbors (m log N) multiplied by the probability of being cho-

sen as a gossip target by one of the neighbors (1
log N), where m is the number

of rings in the ring-set. A node should therefore expect to send and receive m

gossip packets and to initiate m2 probes per gossip period. A node is also the

recipient of probes from neighbors of its neighbors. Since it has m log N neigh-

bors, each of which sends m gossip packets, there are m2 log N gossip packets

with a 1
log N probability of containing a reference to it. Therefore, a node expects

22

to receive m2 probes from neighbors of its neighbors. Assuming m = 9, a probe

packet size of 50 bytes, two packets per probe, and a gossip packet size of 100

bytes, membership dissemination consumes an average of 20.7 KB/period of

bandwidth per node. For a gossip period of 60 seconds, the average overhead

associated with gossip is 345 B/s, independent of system size.

There is also maintenance overhead for performing ring management. In ev-

ery ring management period where the membership of one ring is re-evaluated,

2 log N requests are sent, 2 log N are received, 4 log2 N probes are sent, and

4 log2 N are received. Assuming two packets are necessary per request and per

probe, the size of a probe request packet is 100 bytes and a probe packet is

50 bytes, and a 2000 node system with 16 nodes per ring, ring management

consumes an average of 218 KB/period. For a ring management period of 5

minutes, the average overhead associated with ring management is 727 B/s.

This analysis conservatively assumes that all primary and secondary rings of

all nodes are full, which is unlikely in practice.

2.2 Applications

The following three sections describe how Meridian can be used to solve some

frequently encountered location-related problems in distributed systems.

2.2.1 Closest Node Discovery

Meridian locates the closest node by performing a multi-hop search where each

hop exponentially reduces the distance to the target. This is similar to searching

23

Figure 2.2: A client sends a “closest node discovery to target T” request
to a Meridian node A, which determines its latency d to T and
probes its ring members between (1 − β) · d and (1 + β) · d to de-
termine their distances to the target. The request is forwarded
to the closest node thus discovered, and the process continues
until no closer node is detected.

in structured peer-to-peer networks such as Chord [91], Pastry [78] and Tapestry

[106], where each hop brings the query exponentially closer to the destination,

though in Meridian the routing is performed using physical latencies instead of

numerical distances in a virtual identifier space. Another important distinction

that Meridian holds over the structured peer-to-peer networks is the target node

need not be part of the Meridian overlay. The only requirement is that the laten-

cies between the nodes in the overlay and the target node are measurable. This

enables applications such as finding the closest node to a public web server,

where the web server is not directly controlled by the distributed application

and only responds to HTTP queries.

24

When a Meridian node receives a request to find the closest node to a target,

it determines the latency d between itself and the target. Once this latency is

determined, the Meridian node simultaneously queries all of its ring members

whose distances are within (1 − β) · d to (1 + β) · d. These nodes measure their

distance to the target and report the result back to the Meridian node. Nodes

that take more than (2β + 1) · d to provide an answer are ignored, as they are

more than βd away from the target.

Meridian uses an acceptance threshold β to determine the reduction in dis-

tance at each hop. The route acceptance threshold is met if one or more of the

queried peers is closer than β times the distance to the target, and the client

request is forwarded to the closest node. If no peers meet the acceptance thresh-

old, then routing stops and the closest node currently known is chosen. Fig-

ure 2.2 illustrates the process.

Meridian is agnostic to the choice of a route acceptance threshold β, where

0 ≤ β < 1. A small β value reduces the total number of hops, as fewer peers can

satisfy the requirement, but introduces additional error as the route may be pre-

maturely stopped before converging to the closest node. A large β stems errors

from both poor neighbor selection and small violations in triangle inequality at

the expense of increased hop count.

2.2.2 Central Leader Election

Another frequently encountered problem in distributed systems is to locate a

node that is “centrally situated” with respect to a set of other nodes as illustrated

in Figure 2.3. Typically, such a node plays a specialized role in the network that

25

Figure 2.3: Central leader election selects the Meridian node with the min-
imum average distance to the nodes in the target group. For
this example, node A is the the most centrally situated Merid-
ian node (white) to the target nodes (gray).

requires frequent communication with the other members of the set; selecting a

centrally located node minimizes both latency and network load. An example

application is leader election, which itself is a building block for higher level

applications such as clustering and low latency multicast trees.

The central leader election application can be implemented by extending the

closest node discovery protocol. We replace d in the single target closest node

selection protocol with davg for central leader election. When a Meridian node

receives a client request to find the closest node to the target set T , it determines

the latency set {d1, ..., d|T |} between itself and the targets through direct measure-

ments, and computes the average latency davg = (
∑|T |

i=1 di)/|T |. It selects ring mem-

bers that have latency between (1− β) ∗min{d1, ..., d|T |} and (1 + β) ∗max{d1, ..., d|T |}

to itself, and requests these peers to.determine their respective average latency

to the targets. The remaining part of the central leader election application

follows exactly from the closest node discovery protocol.

Changing the latency aggregation function from taking the average of the

26

latencies to the highest latency target is a useful variation to the protocol, as it

reduces the difference in latency between the targets to the chosen node. This

is useful in multi-player online games, as a player with a significantly lower

latency to the game server than the others has an unfair advantage because it is

the first to receive and react on game events.

2.2.3 Multi-Constraint System

Another frequent operation in distributed systems is to find a set of nodes sat-

isfying constraints on the network geography. For instance, an ISP or a web

hosting service is typically bound by a service level agreement (SLA) to satisfy

latency requirements to well-known peering locations when hosting services

for clients. A geographically distributed ISP may have thousands of nodes at

its disposal, and finding the right set of nodes that satisfy the given constraints

may be necessary for fulfilling an SLA. Latency constraints are also important

for grid based distributed computation applications, where the latency between

nodes working together on a problem is often the main efficiency bottleneck. A

customer may want to specify that ∀q, p ∈ P where P is the set of grid nodes,

dq,p < γ for some desired latency γ.

Finding a node that satisfies multiple constraints can be viewed as a node

selection problem, where the constraints define the boundaries of a region in

space (the solution space), as illustrated in Figure 2.4. A constraint is specified

as a target and a latency bound around that target. When a Meridian node

receives a multi-constraint query with u constraints specified as 〈targeti, rangei〉,

for all 0 < i ≤ u, it measures its latency di to the target nodes and calculates its

27

Figure 2.4: A multi-constraint query consisting of targets A, B,C with re-
spective latency constraints of αa, αb, αC. The shaded area rep-
resents the solution space.

distance to the solution space as

s =

u∑
i=1

max(0, di − rangei)
2 (2.1)

If s is 0, then the current node satisfies all the constraints, and it returns itself

as the solution to the client. Otherwise, it iterates through all its peers, and

simultaneously queries all peers j that are within max(0, (1 − β) · (di − rangei)) to

(1 + β) · (di + rangei) from itself, for all 0 < i ≤ u. These nodes include all the peers

that lie within the range of at least one of the constraints, and possibly other

peers that do not satisfy any of the constraints, but are nevertheless close to the

solution space. These peer nodes measure their distance to the u targets and

report the results back to the source. Nodes that take longer than max0<i≤u((2β +

1) · (di + rangei)) to provide an answer are ignored.

28

The distance s j of each node j to the solution space is calculated using the

metric s defined above. If s j is 0, then node j satisfies all the constraints and is

returned as a solution to the client. If no zero valued s j is returned, the client

determines whether there is an s j < β · s, where β is the route acceptance thresh-

old. If the route acceptance threshold is met, the client request is forwarded to

the peer closest to the solution space. A larger β may increase the success rate,

at the expense of increased hops.

2.3 Meridian Query Language

We described the Meridian framework and provided three algorithms for solv-

ing three commonly encountered problems. But there may well be other

location-related problems to solve, and other solution strategies that applica-

tions may require. Some applications, such as online games or file backups,

may value equal-distance peers for fairness or large distances from anchors to

provide uncorrelated failures, in addition to wanting proximity to a target node

set. To enable such applications and others that we could not foresee, we added

a language for expressing application specific algorithms and a runtime for eval-

uating such algorithms safely on top of the Meridian framework.

The Meridian Query Language (MQL) is a safe, polymorphic, and dynami-

cally typed variant of C that provides tight resource and processing constraints

on each query. Every Meridian packet carries the full query specified by the

user, similar to a capsule in an active network [94], and the query is executed on

each Meridian node that a query traverses.

MQL’s grammar and lexical syntax is very similar to C. To ensure safety,

29

there are no pointers nor any direct references to memory, and type checking as

well as bounds checking are performed at runtime. MQL has the primitive types

int, double and string, as well as two primitive structures Node and Measurement.

The structures are used by many of the library functions that provide access to

Meridian operations. The Node structure is an abstraction of a Meridian node

and contains the address of the node, the Meridian port, and the address and

port of an optional proxy node 2. The Measurement structure encapsulates the

latency information from a Meridian node to a set of targets, and serves as the

return value for library functions that issue latency probes.

An MQL query is processed in an isolated runtime environment which con-

sists of an interpreter that can multiplex multiple simultaneous queries, and a

rich set of native library functions for issuing latency probes or accessing the

ring structure. The runtime environment enforces local resource constraints,

such as the amount of time or memory a query can execute for or allocate per

node. It also enforces resource restrictions that span multiple nodes, such as

the maximum number of hops per query and the query lifetime in the system,

using auditing information embedded into the query packet headers.

The MQL library provides queries access to the underlying Meridian sub-

systems along with convenience functions that are commonly used in localiza-

tion queries. It consists of local functions shown in Figure 2.5 for accessing local

Meridian ring membership information, mathematical functions, and array op-

erations, as well as remote functions shown in Figure 2.6 for resolving names,

issuing probes, and transferring the control flow to another node.

The MQL language and library functions were designed specifically to ad-

2Section 2.5.2 describes in detail the use of proxy nodes in Meridian.

30

Node get_self() double acos(double x)

Node[] ring_lt(double latency_ms) double atan(double x)

Node[] ring_le(double latency_ms) double log(double x)

Node[] ring_gt(double latency_ms) double exp(double x)

Node[] ring_ge(double latency_ms) double pow(double x, double y)

T print(T value) void push_back(T array[], T value)

T println(T value) void pop_back(T array[])

double dbl(int x) int array_size(T array[])

int round(double x) T[] array_intersect(T x[], T y[])

int ceil(double x) T[] array_union(T x[], T y[])

int floor(double x) T array_max(T x[])

double sin(double x) int array_max_offset(T x[])

double cos(double x) T array_min(T x[])

double tan(double x) int array_min_offset(T x[])

double asin(double x) double array_avg(T x[])

Figure 2.5: Local system functions for accessing local Meridian ring mem-
bership information, mathematical functions, and array oper-
ations. The type T in the function definitions is a generic type
that can be instantiated as any primitive or abstract data type
at runtime.

T rpc(Node target, func, ...) Measurement[] get_distance_icmp(

int dns_lookup(string name) Node target[],

string dns_addr(int addr) int timeout_ms)

Measurement[] get_distance_dns(Measurement[] get_distance_icmp(

Node target[], Node source[],

int timeout_ms) Node target[],

Measurement[] get_distance_dns(int timeout_ms)

Node source[], Measurement[] get_distance_ping(

Node target[], Node target[],

int timeout_ms) int timeout_ms)

Measurement[] get_distance_tcp(Measurement[] get_distance_ping(

Node target[], Node source[],

int timeout_ms) Node target[],

Measurement[] get_distance_tcp(int timeout_ms)

Node source[],

Node target[],

int timeout_ms)

Figure 2.6: System functions for issuing remote procedure calls, DNS
name resolutions, and latency probes using DNS queries, TCP
SYN/ACK packets, ICMP ECHO packets or custom Meridian
UDP packets.

31

1 Measurement closest(double beta, Node target) { 19 min_lat = cur_lat;

2 Node t[] = {target}; 20 }

3 Measurement self = get_distance_tcp(t, -1); 21 }

4 double self_lat = self.distance[0]; 22 if (min_index == -1) {

5 Node ring_m[] = array_intersect(23 return self;

6 ring_ge((1.0 - beta) * self_lat), 24 }

7 ring_le((1.0 + beta) * self_lat)); 25 Measurement min_n = r_lat[min_index];

8 if (array_size(ring_m) == 0) { 26 if (min_n.addr != 0

9 return self; 27 && min_lat < (self_lat * beta)) {

10 } 28 Measurement ret_n = rpc(

11 Measurement r_lat[] = get_distance_tcp(ring_m, 29 ring_m[min_index], closest,

12 t, ceil((2.0 * beta + 1.0) * self_lat)); 30 beta, t);

13 int min_index = -1; 31 if (ret_n.addr != 0) {

14 double min_lat = self_lat; 32 return ret_n;

15 for (int i=0; i < array_size(r_lat); i=i+1) { 33 }

16 double cur_lat = r_lat[i].distance[0]; 34 }

17 if (cur_lat < min_lat) { 35 return min_n;

18 min_index = i; 36 }

Figure 2.7: The closest node discovery protocol in MQL.

dress problems in the network localization domain. This enables MQL imple-

mentations of network localization algorithms to be intuitive and compact. Fig-

ure 2.7 illustrates the closest node discovery protocol written in MQL. The MQL

version specifies the complete closest node discovery protocol, and is signfi-

cantly shorter and easier to understand than our previous hand-crafted C++

version.

2.4 ClosestNode.com: A General-Purpose Deployment

The network localization algorithms we have described so far rely the partic-

ipation of client applications in the localization protocol. Explicit network lo-

calization queries must be added to existing client applications to take advan-

tage of Meridian; an operational challenge for widely deployed software. To

enable support for existing client applications and lower the barrier of entry

32

for new applications, we deployed a DNS to Meridian gateway called Closes-

tNode.com. This gateway allows Meridian-oblivious clients to perform closest

node selection to registered services via DNS requests. For example, a regis-

tered service of ClosestNode.com, named dht, would be given the sub-domain

dht.closestnode.com. When a client issues a request to resolve dht.closestnode.com,

the ClosestNode.com DNS server, which is the authoritative name server for

the domain, initiates a modified closest node discovery request on the Merid-

ian overlay specific to the service using the client’s DNS server as the target.

The IP addresses of the four closest nodes are then returned as the result of the

domain resolution to the client. The necessary changes to the service itself are

minimal. Service providers need to provide the ClosestNode.com DNS server

with a small list of nodes that are running their service, and the service needs

to either be modified to call a Meridian library function at startup, or start a

stand-alone Meridian daemon along-side it.

Providing more than one nearby node in the domain name resolution helps

mitigate the effects of node failures on service availability. To support this

requirement, we implemented a k-closest node discovery protocol in MQL.

Although based on the standard closest node discovery protocol, substantial

changes were required to expand the search results. A running list of the clos-

est unexplored candidates nodes is used to ensure good coverage of the search

space beyond the closest node. Recursive resolution was replaced with itera-

tive resolution to reduce the reverse path length and resolution latency. These

changes illustrate the flexibility of MQL which enabled ClosestNode.com to be

deployed with a new network localization protocol without requiring changes

to the Meridian binaries. The MQL source code for the k-closest node discovery

protocol can be found in Appendix A.

33

For services that are sensitive to resolution latency, ClosestNode.com pro-

vides an option to resolve specific domains immediately for new client DNS

servers. These results are chosen randomly from the overlay and are returned

with low TTLs. At the same time, the ClosestNode.com DNS server initiates

closest node discoveries for these client DNS servers and caches the results. The

cached results are used when the client DNS servers return after the initial re-

sults expire.

CobWeb [89], a distributed web cache and proxy deployed on PlanetLab, is

an example of a large-scale service using ClosestNode.com for client redirection.

We will show in Section 2.5 the improvements in the end-to-end performance

of this service from using ClosestNode.com.

2.5 Evaluation

We evaluated Meridian through both a large scale simulation parameterized

with real Internet latencies and a physical deployment on PlanetLab. We also

evaluated Meridian’s impact on application performance of a PlanetLab service

in the context of ClosestNode.com.

2.5.1 Simulation

We performed a large scale measurement study of internode latencies between

2500 nodes to parameterize our simulations. We collected pair-wise round-trip

time measurements between 2500 DNS servers at unique IP addresses, span-

ning 6.25 million node pairs. The study was performed on 10 different Plan-

34

etLab nodes, with the median value of the runs taken for the round-trip time

of each pair of nodes. Data collection was performed on May 5-13, 2004; query

interarrival times were dilated, and the query order randomized, to avoid queu-

ing delays at the DNS servers. The latency measurements between DNS servers

on the Internet were performed using the King measurement technique [40].

In the following experiments, each test consists of 4 runs with 2000 Meridian

nodes, 500 target nodes, k = 16 nodes per ring, 9 rings per node, s = 2, probe

packet size of 50 bytes, β = 1
2 , and α = 1ms, for 25000 queries in each run. The

results are presented either as the mean result of the 100000 total queries, or as

the mean of the median value of the 4 runs. All references to latency in this

section are in terms of round-trip time. Each simulation run begins from a cold

start, where each joining node knows only one existing node in the system and

discovers other nodes through the gossip protocol.

We compare Meridian to virtual coordinates computed through network

embeddings. We computed the coordinates for our 2500 node data set using

GNP, Vivaldi and Vivaldi with height [25]. GNP is a global virtual coordinate

system based on static landmarks. We configured it for 15 landmarks and 8

dimensions, and used the N-clustered-medians protocol for landmark selection.

Vivaldi is a virtual coordinate scheme based on spring simulations and was con-

figured to use 6 dimensions with 32 neighbors. Vivaldi with height is a recent

scheme that performs a non-Euclidean embedding which assigns a two dimen-

sional location plus a height value to each node. We randomly select 500 targets

from our data set of 2500 nodes.

We first examine the inherent embedding error in absolute coordinate sys-

tems and determine the error involved in finding the closest neighbor. The dark

35

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

MeridianVivaldi(h)+CANVivaldi(h)Vivaldi+CANVivaldiGNP+CANGNP

E
rr

o
r

(m
s
)

Figure 2.8: Light bars show the median error for discovering the closest
node. Darker bars show the inherent embedding error with
coordinate systems. Meridian’s median closest node discovery
error is an order of magnitude lower than schemes based on
embeddings.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
p

a
ir
s

Relative error of closest node selection

Meridian
GNP(15L,8D) + CAN

Vivaldi(2D+Height) + CAN
Vivaldi(6D) + CAN

Vivaldi(6D) + CAN + 2 Active Probes
Vivaldi(6D) + CAN + 3 Active Probes

Figure 2.9: Meridian’s relative error for closest node discovery is signifi-
cantly better than virtual coordinates.

bars in Figure 2.8 show the median embedding error of each of the coordinate

schemes, where the embedding error is the absolute value of the difference be-

tween the measured distance and predicted distance over all node pairs. While

these systems incur significant errors during the embedding, they might still

36

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 4 6 8 10 12 14 16
 200

 250

 300

 350

 400

M
e

d
ia

n
 e

rr
o

r
(m

s
)

A
v
e

ra
g

e
 q

u
e

ry
 l
a

te
n

c
y
 (

m
s
)

Nodes/Ring

2000 nodes: Median error (ms)
1000 nodes: Median error (ms)

2000 nodes: Average query latency (ms)
1000 nodes: Average query latency (ms)

Figure 2.10: A modest number of nodes per ring achieves low error. Av-
erage latency is determined by the slowest node in each ring
and the hop count, and remains constant within measurement
error bounds.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 200

 250

 300

 350

 400

M
e

d
ia

n
 e

rr
o

r
(m

s
)

A
v
e

ra
g

e
 q

u
e

ry
 l
a

te
n

c
y
 (

m
s
)

Beta value

Median error (ms)
Average query latency (ms)

Figure 2.11: An increase in β significantly improves accuracy for β ≤ 0.5.
The average query latency increases with increasing β, as a
bigger β increases the average number of hops taken in a
query.

pick the correct closest node. To evaluate the error in finding the closest node,

we assume the presence of a geographic query routing layer, such as a CAN

deployment, with perfect information at each node. This assumption biases the

experiment towards virtual coordinate systems and isolates the error inherent

37

in network embeddings. The resulting median errors for all three embedding

schemes, as shown by the light bars in Figure 2.8, are an order of magnitude

higher than Meridian. Figure 2.9 compares the relative error CDFs of different

closest node discovery schemes. Meridian has a lower relative error than the

embedding schemes by a large margin over the entire distribution.

We also examine the improvement in closest node discovery accuracy us-

ing Vivaldi coordinates with the addition of latency data from active probes.

We modify Vivaldi+CAN to return the top M candidates based on their coor-

dinates and actively probe the target to determine the closest candidate. These

probes are on top of the those required to determine the virtual coordinates of

the target; an on-demand prerequisite for targets that are not already part of

the Vivaldi overlay. By default, each new Vivaldi node communicate with 16

nearby neighbors and 16 distant neighbors to calculate its coordinates [25]. Fig-

ure 4.8 shows the results for M = 2 and M = 3. Active probing greatly improves

the accuracy of closest node discovery, but is still significantly less accurate than

Meridian and requires additional probing on top of those needed to assign coor-

dinates to the target, which already has similar probing requirements as Merid-

ian. Note that selecting the M closest targets for M > 1 in a scalable (< O(N))

manner requires additional, complex extensions to CAN that are equivalent to

a multi-dimensional expanding ring search.

The accuracy of Meridian’s closest node discovery protocol depends on sev-

eral parameters, such as the number of nodes per ring k, acceptance interval β,

the constant α, and the gossip rate. The most critical parameter is the number of

nodes per ring k, as it determines the coverage of the search space at each node.

Figure 2.10 shows that median error drops sharply as k increases. Hence, a node

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 200

 240

 280

 320

 360

 400

M
e

d
ia

n
 e

rr
o

r
(m

s
)

A
v
e

ra
g

e
 q

u
e

ry
 l
a

te
n

c
y
 (

m
s
)

System size

Median error (ms)
Average query latency (ms)

Figure 2.12: Median error and average query latency as a function of sys-
tem size, for k = blog1.6 Nc; both remain constant as the net-
work grows, as predicted by the analytical results.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
e

ra
g

e
 q

u
e

ry
 l
o

a
d

 (
K

B
)

System size

Without Caching
With Caching

Figure 2.13: The average load of a closest node discovery query increases
sub-linearly with system size (k = blog1.6 Nc). With minimal
per query caching, average load is reduced by more than half.

only needs to keep track of a small number of other nodes to achieve high ac-

curacy. The results indicate that as few as eight nodes per ring can return very

accurate results with a system size of 2000 nodes.

High accuracy must also be coupled with low query latency for interactive

applications that have a short lifetime per query and cannot tolerate a long ini-

39

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
n

o
d

e
s

In-degree ratio

20ms ball
50ms ball

Figure 2.14: The in-degree ratio shows the average imbalance in incoming
links within spherical regions. More than 90% of regions have
a ratio less than 2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
n
o
d
e
s

Relative error of central leader election

Meridian 2 targets
Vivaldi 2 targets

GNP 2 targets

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
n
o
d
e
s

Relative error of central leader election

Meridian 8 targets
Vivaldi 8 targets

GNP 8 targets

Figure 2.15: Central leader election accuracy.

tial setup time. The closest node discovery latency is dominated by the sum

of the maximum latency probe at each hop plus the node to node forwarding

latency; we ignore processing overheads because they are negligible in compar-

ison. Meridian bounds the maximum latency probe by 2β + 1 times the latency

from the current intermediate node to the destination, as any probe that requires

40

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

P
e

rc
e

n
ta

g
e

 s
u

c
c
e

s
s
 (

%
)

Percentage of nodes that can satisfy constraints (%)

Meridian
Vivaldi

GNP

Figure 2.16: The percentage of successful multi-constraint queries is above
90% when the number of nodes that can satisfy the constraints
is 0.5% or more.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 4 6 8 10 12 14 16
 260

 280

 300

 320

 340

 360

 380

F
a

ilu
re

 p
e

rc
e

n
ta

g
e

 (
%

)

A
v
e

ra
g

e
 q

u
e

ry
 l
a

te
n

c
y
 (

m
s
)

Nodes/Ring

Failure percentage (%)
Averagey query latency (ms)

Figure 2.17: An increase in the number of nodes per ring k significantly
reduces the failure percentage of multi-constraint queries for
k ≤ 8.

more time cannot be a closer node and its result is discarded. The average query

latency curve in Figure 2.10 shows that queries are resolved quickly regardless

of k. Average query latency is determined by the hop count and the slowest

node in each ring, subject to the maximum latency bound; both increase only

marginally as k increases from four to sixteen.

41

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 160

 180

 200

 220

 240

 260

 280

 300

F
a

ilu
re

 p
e

rc
e

n
ta

g
e

 (
%

)

A
v
e

ra
g

e
 q

u
e

ry
 l
a

te
n

c
y
 (

m
s
)

System size

Failure percentage (%)
Average query latency (ms)

Figure 2.18: The percentage of multi-constraint queries that cannot be re-
solved with Meridian and average query latency. Both are
independent of system size.

The β parameter captures the tradeoff between query latency and accuracy

as shown in Figure 2.11. Increasing β increases the query latency, as it reduces

the improvements necessary before taking a hop and therefore increases the

number hops taken in a query. However, increasing β also provides a significant

increase in accuracy for β ≤ 0.5. Accuracy is not sensitive to β for β > 0.5.

We examine the scalability of the closest node discovery application by eval-

uating the error, latency and aggregate load at different system sizes. Figure 2.12

plots the median error and average query latency. We set k = blog1.6 Nc such that

the number of nodes per ring varies with the system size; setting k to a constant

would favor small system sizes, and this particular log base yields k = 16 for

2000 nodes. The median error remains constant as the network grows, vary-

ing only within the error margin. The error improves for really small networks

where it is feasible to test all possible nodes for proximity. Similarly, the query

latency remains constant for all tested system sizes.

Scalability also depends on the aggregate load the system places on the net-

42

work, as this can limit the number of concurrent closest node discoveries that

can be performed at a particular system size. Figure 2.13 plots the total band-

width required throughout the entire network to resolve a query, that is, the

total number of bytes from every packet associated with the query. It shows the

results for both the reference implementation with no caching, where a node

may naively repeat probes to the target from a single query, as well as an imple-

mentation with minimal caching, where nodes retain latency information ob-

tained from probes for the query duration. Both implementations show sub-

linear growth in average load with system size, with 2000 nodes requiring a

total of 10.3 KB and 4.6 KB per query for the uncached and cached implemen-

tation. The number of probes per query, a measure of the load imposed on the

target, follows the same growth trend as aggregate load, with an average of 53

and 24 probes per query at 2000 nodes for the uncached and cached implemen-

tation. The cached implementation requires fewer average probes than Vivaldi,

which by default issues 32 probes to compute the coordinates of a new target.

A desirable property for load-balancing is stochastic independence of the

ring sets. We verify this property indirectly by measuring the in-degree ratio

of the nodes in the system. The in-degree ratio is defined as the number of

incoming links to a node A over the average number of incoming links to nodes

within a ball of radius r around A. If the ring sets are independent, then the

in-degree ratio should be close to one; a ratio of one indicates that links to the

region bounded by radius r around A are distributed uniformly across the nodes

in the area. Figure 2.14 shows that Meridian distributes load evenly. More than

90% of the balls have an in-degree ratio less than two for balls of radius 20ms

and 50ms.

43

Another useful property is that ring members are well distributed. To deter-

mine the effectiveness of Meridian’s ring membership management protocol,

we examine the latency ratio of the nodes. The latency ratio for a node A and a

target node B is defined as the latency of node C to B over the latency of A to B,

where C is the neighbor of A that is closest to B. We find that, for β = 1
2 , further

progress can be made via an extra hop to a closer node more than 80% of the

time. For β = 0.9, an extra hop can be taken over 97% of the time. This indicates

that the ring membership management protocol selects a useful and diverse set

of ring members. Compared to a random replacement protocol, we find that the

standard deviation of relative error is 38ms when using hypervolumes for selec-

tion and 151ms when using random replacement; hypervolume-based selection

is more consistent and robust.

We evaluate how Meridian performs in central leader election by measuring

its relative error as a function of group size. Figure 2.15 shows that, as group

size gets larger, the relative error of the central leader election application drops.

Intuitively, this is because the larger group sizes increase the number of nodes

eligible to serve as a well-situated leader, and simplify the task of routing the

query to a suitable node. Central leader election based on virtual coordinates

incurs significantly higher relative error than Meridian for a group size of two.

The accuracy gap between coordinate schemes and Meridian closes as the group

size increases, as large groups simplify the problem and even random selection

becomes competitive with more accurate selection.

We evaluate our multi-constraint protocol by the percentage of queries that

it can satisfy, parameterized by the difficulty of the set of constraints. For each

multi-constraint query we select four random target nodes and assign a con-

44

straint to each target node chosen uniformly at random between 40 and 80 ms.

The difficulty of a set of constraints is determined by the number of nodes in

the system that can satisfy them. The fewer the nodes that can satisfy the set of

constraints, the more difficult is the query.

Figure 2.16 shows a histogram of the success rate broken down by the per-

centage of nodes in the system that can satisfy the set of constraints. For queries

that can be satisfied by 0.5% of the nodes in the system or more, the success rate

is over 90% for Meridian and less than 11% when using coordinate schemes.

As in closest node discovery, k, the number of nodes per ring, has the largest

influence on the performance of the multi-constraint protocol. Figure 2.17

shows that the failure rate decreases as the number of nodes per ring increases.

It also shows a decrease in average query latency as the number of nodes per

ring increases. An increase in β decreases the failure percentage and increases

the average latency of a multi-constraint query, though the performance of the

multi-constraint protocol is mostly independent of β.

The scalability properties of the multi-constraint system are very similar to

the scalability of closest node discovery. Figure 2.18 shows that the failure rate

and the average query latency are independent of system size. The average

load per multi-constraint query (not shown) grows sub-linearly and is approx-

imately four times the average load of closest node discovery query. The non-

increasing failure rate and the sub-linear growth of the query load make the

multi-constraint protocol highly scalable.

45

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
p

a
ir
s

Relative error of closest node selection

Meridian (PlanetLab)
Meridian (Simulation)

Figure 2.19: The relative error of closest node discovery for a Meridian de-
ployment on PlanetLab versus simulation. Meridian achieves
results comparable to or better than our simulations in a real-
world deployment.

2.5.2 Physical Deployment

We have implemented and deployed the Meridian framework and all three ap-

plications on PlanetLab. The implementation is small, compact and straightfor-

ward; it consists of approximately 6500 lines of C++ code. Most of the complex-

ity stems from support for firewalled hosts.

Hosts behind firewalls and NATs are very common on the Internet, and a

system must support them if it expects large-scale deployment over uncon-

trolled, heterogeneous hosts. Meridian supports such hosts by pairing each fire-

walled host with a fully accessible peer, and connecting the pair via a persistent

TCP connection. Messages bound for the firewalled host are routed through

its fully accessible peer. A ping, which would ordinarily be sent as a direct

UDP packet or a TCP connect request, is sent to the proxy node instead, which

forwards it to the destination, which then performs the ping to the originating

node and reports the result. A node whose proxy fails is considered to have

46

failed, and must join the network from scratch to acquire a new proxy. Since a

firewalled host cannot directly or indirectly ping another firewalled host, fire-

walled hosts are excluded from ring membership on other firewalled hosts, but

included on fully-accessible nodes.

A large overlay network that performs active probes can potentially be used

as a platform for launching denial-of-service attacks. This problem can be

avoided either by controlling the set of clients that may inject queries via au-

thentication, or by placing limits on the probing frequency of the overlay nodes.

Our implementation chooses the latter and caches the result of latency probes.

This considerably reduces the load the overlay nodes can place on a target, as

each overlay node can only be coerced to send at most one probe per target

within a cache timeout.

We deployed the Meridian implementation over 166 PlanetLab nodes. We

benchmark the system with 1600 target web servers drawn randomly from the

Yahoo web directory, and examine the latency to the target from the node se-

lected by Meridian versus the optimal obtained by querying every node. Merid-

ian was configured with k = 8, s = 2, β = 1
2 , and α = 1ms. Overall, median error

in Meridian is 0.54ms, average query latency is 363ms, and the relative error

CDF in Figure 2.19 shows that the system performs better than simulation re-

sults from a similarly configured system.

2.5.3 Application Performance

The previous results show the improvements in node selection accuracy from

using Meridian. In this section, we evaluate the end-to-end improvement in

47

performance of a distributed application that uses ClosestNode.com, the Merid-

ian to DNS gateway described in Section 2.4, for server selection. We modified

the CobWeb service [89], a distributed web-proxy deployed on 484 globally dis-

tributed PlanetLab nodes, to start a Meridian daemon process in its node startup

scripts and registered the cob-web.org domain with the ClosestNode.com DNS

server 3. In addition, we registered the domain d.cob-web.org that returns four

random CobWeb servers for each request with ten minute TTL values.

We evaluated CobWeb’s end-to-end performance by running Apache-

Bench [95], a standard benchmarking tool for webservers, on the CobWeb de-

ployement. We used Alexa’s top 100 most popular websites as the test corpus,

and ran ApacheBench against CobWeb on each of the 484 PlanetLab nodes that

CobWeb was deployed on. A benchmark run on a node consisted of fetching

each of the Alexa sites 10 times, with the median fetch latency for each site be-

ing used. Before each benchmark run, we stopped the CobWeb and Meridian

processes on the test machine to ensure that the pages were not served locally,

and primed the cache of the site’s DNS resolver to replicate the performance

of the system at steady-state. We ran the benchmark with both Meridian node

selection and random node selection. Due to the use of a live service in our ex-

periments, evaluating the performance of CobWeb against other node-selection

techniques was not possible as it would have introduced further disruptions to

the service. The purpose of this experiment is, therefore, limited to showing the

impact of latency sensitive node-selection on the end-to-end performance of a

real distributed application.

Figure 2.20 are the CDFs of page fetch latencies from the experiment. It

3A service is typically registered as service.closestnode.com. In the case of CobWeb, ClosestN-
ode.com’s DNS server also served as CobWeb’s authoritative name server, allowing the use of
the domain cob-web.org directly.

48

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
re

q
u

e
s
ts

Page fetch latency (ms)

Meridian-based selection
Random selection

Figure 2.20: The page fetch latency for fetching Alexa’s top 100 websites
through a distributed web-proxy from 484 different PlanetLab
nodes.

shows a substantial reduction in page fetch latency from using Meridian. Cob-

Web’s median page-fetch latency was reduced from 242 ms to 9 ms by using

Meridian node-selection in place of random selection. The 95th percentile page-

fetch latency was similarily reduced from 619 ms to 287 ms. These results show

that Meridian’s closest node discovery protocol is able to significantly reduce

the page-fetch time of CobWeb, and that latency-sensitive node-selection is a

critical element in building a high-performance distributed service.

2.6 Summary

Selecting nodes based on their network location is a critical building block for

many large scale distributed applications. Network coordinate systems, cou-

pled with a scalable node selection substrate, may provide one possible ap-

proach to solving such problems. However, the generality of absolute coor-

dinate systems comes at the expense of accuracy and complexity.

49

In this chapter, we outlined a lightweight, accurate and scalable framework

for solving positioning problems without the use of explicit network coordi-

nates. Our approach is based on a loosely structured overlay network and uses

direct measurements instead of virtual coordinates to perform location-aware

query routing without incurring either the complexity, overhead or inaccuracy

of an embedding into an absolute coordinate system or the complexity of a ge-

ographic peer-to-peer routing substrate.

We have evaluated our system through a PlanetLab deployment as well as

extensive simulations, parameterized by data from measurements of 2500 nodes

and 6.25 million node pairs. The evaluation indicates that Meridian is effective;

it incurs less error than systems based on an absolute embedding, is decentral-

ized, requires relatively modest state and processing, and locates nodes quickly.

We have deployed a DNS to Meridian gateway that enables oblivious clients

to issue Meridian lookups, reducing the amount of work required to incorpo-

rate Meridian into other systems. We have shown how the framework can be

used to solve three network positioning problems frequently-encountered in

distributed systems, and described a domain specific language that can be used

to express other application-specific algorithms. We will show in the next chap-

ter how the lightweight approach we used for performing location-aware node

selection can be applied to solving problems in object localization.

50

CHAPTER 3

APPROXIMATE MATCHING FOR PEER-TO-PEER OVERLAYS

Applications of information retrieval are pervasive in today’s computing

landscape. Most users navigate the web exclusively via Google or Bing, and

large corporations such as Walmart keep petabytes of customer data that are

exhaustively mined to help them make informed business decisions. These ap-

plications typically rely on large centralized databases that provide good per-

formance and support complex queries, yet such databases are difficult and ex-

pensive to operate, placing them out of reach of applications without significant

financial rewards.

Peer-to-peer data distribution and retrieval techniques have been tasked to

serve these less financially rewarding applications, and have become widely

deployed because of their cost-effectiveness, scalability, and resilience to at-

tacks. Yet imprecision stemming from partial specifications of keywords, com-

mon variations of search terms, and misspellings pose significant problems to

locating content in a peer-to-peer system. Efficiently routing a query to a set

of objects whose keys are close but not identical to the search key is a difficult

problem known as approximate matching.

In this chapter, we present Cubit, a scalable peer-to-peer system that can ef-

ficiently find the k closest data items for any search key. It is, to our knowledge,

the only efficient peer-to-peer overlay that provides an approximate match

primitive. We describe a new technique for (conceptually) mapping nodes and

object into a keyword space, a metric space that captures the similarity of key-

words, and provide algorithms to efficiently route within this space. Finally,

we present results from both a real deployment and large-scale simulations that

51

shows the system is accurate, efficient, and robust. In particular, it can place the

target object in the top 20 results for more than 94% of the queries even with a

high degree of perturbation in the search terms.

3.1 Approach

An object stored in Cubit is characterized by one or more keywords. Cubit’s

approach to approximate matching relies on an accurate notion of distance be-

tween keywords. Such distance should correspond to the users’ intuition on

which keywords are similar and which are different. The choice of any partic-

ular distance is driven by domain requirements; the Cubit’s core is agnostic to

this choice. For example, Euclidean distance would be a reasonable choice if a

keyword is a vector of network coordinates of a node (e.g. [69]), whereas rela-

tive entropy would be more appropriate for representing the distance between

the feature vectors of two images (e.g. [67]).

3.1.1 Keyword Space

In this chapter, we focus on keywords that are (short) text strings, such as artist

names or words in a movie title. Our notion of distance targets misspellings;

in particular, the distance between a given keyword and its misspelling should

be small. Cubit mainly uses the most common notion of distance on strings, the

Levenshtein distance, commonly known as the edit distance. It is equal to the mini-

mum number of insertions, deletions and substitutions needed to transform one

string to another. We also evaluate Cubit using the Damerau-Levenshtein distance,

an extension of the edit distance that includes the transposition of two charac-

52

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

F
ra

c
ti
o

n
 o

f
W

o
rd

 P
a

ir
s

Edit Distance of Word Pairs

Figure 3.1: The edit distance between pairs of keywords in the Netflix data
set: most distances are very small.

ters (a common typographical error) as a single operation. Once the notion of

distance is fixed – throughout the chapter it will be the edit distance, unless

noted otherwise – the keywords intrinsically lie in the keyword space, a metric

space on keywords with a metric given by the edit distance.1

Consider a typical keyword space taken from the movie database released

by Netflix [68] consisting of about 12, 000 keywords from 17, 770 movie titles. By

definition, all edit distances are integer values. Since most keywords are short,

distances in the keyword space tend to be small (see Figure 3.1). Thus the size

of a ball around a typical node grows with the radius much faster than (say) in a

two-dimensional grid. In fact, a typical keyword space is very different from the

“standard” metric spaces such as Euclidean space. To appreciate this difference,

consider the example in Figure 3.2 with a set of five keywords which cannot be

embedded into the coordinate plane. Such an embedding becomes increasingly

more inaccurate with additional keywords, even if we allow more dimensions.

Cubit’s use of the keyword space obviates such an inaccurate embedding.

1A metric space on a set X is a pair (X, σ), where σ is a metric, i.e. a non-negative symmetric
function σ that obeys (σ(a, b) = 0 ⇐⇒ a = b) and triangle inequality σ(a, c) ≤ σ(a, b) + σ(b, c).

53

Figure 3.2: The edit distance between keywords: five keywords which
cannot be embedded into the coordinate plane so that all dis-
tances are preserved. Preserving the distances between four
nodes (all but ring) distorts the distances to the fifth node.

3.1.2 Multi-Keyword Matching

Search queries typically consist of more than one keyword. Moreover, not all

keywords relevant to the desired object may be included in the query, and some

of the keywords may be misspelled. For example, a user may search for a long

movie title using only a few (misspelled) keywords among those that appear

in the title. Cubit matches multi-keyword queries to objects using the phrase

distance between a query and an object, which we define as the sum, over all

search terms, of the minimal edit distance between the search term and the ob-

ject’s keywords. Note that the ordering of keywords does not matter.

Cubit also supports user-specified boolean operators, specifically AND, OR

and NOT, between keywords and phrases to enable the construction of expres-

sive, multi-keyword search queries. An object keyword matches a term in the

boolean expression if it is within a threshold distance to the search key in the

54

keyword space. The returned results consist of the set of objects that evaluate to

true to the boolean expression.

3.1.3 Node ID Assignment

Cubit nodes are distributed in the same space as keywords. Each node in Cu-

bit is assigned a unique string ID, which determines its “position” in the key-

word space. The position determines how a given node is used in Cubit. First,

each Cubit node is responsible for storing the set of keywords for which it is

the closest node. Second, Cubit implements a distributed protocol which navi-

gates through nodes in the keyword space and locates nodes that store possible

matches based on their positions. The details of the protocol are not critical at

this stage; the crucial point is that the navigation happens within the keyword

space rather than on a ring or some other highly structured artificial routing

space of a typical structured peer-to-peer network.

Node IDs are chosen to provide a good coverage of the keyword space. A

natural approach is to choose node IDs at random. Since the distribution of

words in a human language is known to be very different from that of random

strings, we instead choose node IDs at random among keywords associated with

previously inserted objects in the system. Specifically, at join time each node

independently selects a random keyword from those that have been inserted

into the overlay, ensuring uniqueness by detecting ID collisions.

55

3.1.4 Navigation

The navigation protocol is the core component of Cubit. To support this proto-

col, Cubit creates and maintains a multi-resolution overlay network on nodes

such that each node has several peers at every distance from itself; the peers

at a given distance are chosen to maximize the coverage of that region. Such

overlay design is inspired by the small-world construction [50] in which a grid

is augmented by a sparse set of randomly chosen edges, with roughly the same

number of edges for each distance scale. In the resulting graph, a greedy rout-

ing algorithm (which on each step minimizes the distance to target) succeeds in

finding short routes to any given target with high probability.

In Cubit, the distance scales are linear rather than exponential because the

keyword space has a very small diameter. The small-world-like overlay is cre-

ated via an underlying low-overhead gossiping protocol under which nodes

randomly exchange peer identifiers and thus randomize their peer sets. Since

the distance to the target can be easily computed from the corresponding node

ID, the greedy routing algorithm requires very little state and is easy to im-

plement in practice. Both the overlay creation and the small-world navigation

happen, essentially, in the keyword space.

3.2 Framework

The basic Cubit routing framework builds on the small world overlay intro-

duced in Chapter 2 for routing in the network latency space. The framework re-

lies on multi-resolution rings to organize peers, a ring membership replacement

56

Figure 3.3: A Cubit node organizes its peers into concentric rings, each
with a fixed number of nodes. In this example, the solid circles
represent peers in node A’s peer-set, the empty circles represent
other nodes, and the squares represent object keywords in the
system. The shaded region depicts the sub-space that is closer
to A than any other node. The master record for each keyword
in the shaded region is stored at node A.

scheme to maximize the usefulness of ring members, and a gossip protocol for

node discovery and membership dissemination.

3.2.1 Multi-Resolution Rings

Each Cubit node organizes its peers into a set of concentric rings. In each ring, a

node retains a fixed number, kring, of neighbors whose distance to the host lies

within the ring boundaries. This ring structure enables a Cubit node to retain a

relatively large number of pointers to other nodes within its vicinity, while also

providing a sufficient number of pointers to far-away peers.

57

The Cubit ring structure is illustrated in Figure 3.3. The ith ring has inner

radius Ri = αi and outer radius Ri+1, for i ≥ 0, where α is a constant. (We use

α = 1.) Each node keeps track of a finite number of rings; all rings i > i∗ for a

system-wide constant i∗ are collapsed into a single, outermost ring that spans

the range [αi∗,∞].

In addition to the multi-resolution rings, each node maintains a small leaf set,

a set of nodes used for object replication management and collision detection on

node joins. The leaf-set contains a node’s (β frepl)-closest neighbors, where β ≥ 1

is a parameter and frepl is the replication factor; that is, the number of nodes at

which each keyword is replicated.

3.2.2 Ring Membership Management

The number of nodes per ring, kring, represents a trade-off between accuracy

and overhead. A large value of kring allows each node to retain more infor-

mation for better route selection during query routing, but requires additional

overhead in both memory and bandwidth. The utility of a ring member is in

relationship to the amount of diversity it can provide to the ring. Diverse ring

members provide better coverage and minimize “holes” in the keyword space,

reducing the likelihood that a node is overlooked in query routing.

For each ring, the node retains a fixed number lring of additional nodes that

serve as potential ring candidates. During ring membership selection, an in-

frequent periodic event, the node selects a subset of kring ring members from

the kring + lring candidates. The goal is to achieve a good coverage of the cor-

responding annulus in the keyword space. The specific heuristic used to ac-

58

complish this is to assign each candidate node a point in the (kring + lring)-

dimensional space, where each dimension represents its distance to one of the

candidate nodes, and choose a subset of kring nodes that forms a polytope with

the largest hypervolume. Any heuristic for picking a geometrically diverse set

of peers would suffice; the polytope volume provides a principled way to select

such diverse peers.

3.2.3 Gossip Based Node Discovery

Cubit uses a standard anti-entropy push-pull protocol [29] for node discovery

and dissemination. At each gossip round, a Cubit node collects a random se-

lection of its ring members, and pushes this collection along with its own node

information to a random member in each of its rings. At the same time, it pulls

back a random selection of nodes from each of the selected ring members. The

exchanged nodes are kept as members in the appropriate ring or as replace-

ment candidates if the ring is full. Additionally, nodes exchange their leaf-set

with their leaf-set members periodically at a more frequent rate. This ensures

that changes to the leaf-set are disseminated more quickly than changes to more

distant neighbors.

3.2.4 Replication Management

Cubit replicates objects in order to achieve high availability. The number of

replicas of an object naturally falls over time as nodes exit the system. We in-

troduce a simple replication management protocol to maintain the number of

59

Algorithm 1: MAINTENANCE PROTOCOL

Require:
E: Timeout event R: Local ring set
L: Local node O: Object repository
H: Leaf set Y: Replication factor

1: if E.TYPE() = GossipTimer then
2: W ← R.SELECTRANDOMNODES()
3: for all N in W do
4: N.SEND(GossipRequest, (W - N + L))
5: W ← H.GETNODES()
6: for all N in H.GETNODES() do
7: N.SEND(GossipRequest, (H.GETNODES() - N + L))
8: else if E.TYPE() = ReplacementTimer then
9: D ← R.GETRANDOMRINGINDEX()

10: A ← R.GETPRIMARY(D) + R.GETSECONDARY(D)
11: B ← {}
12: while A.LENGTH() > R.MAXNODESPERRING() do
13: M,V ← NIL, 0
14: for all N in A do
15: S ← POLYTOPEVOLUME(A - N)
16: if M = NIL or S > V then
17: M,V ← N, S
18: A, B ← A - M, B + M
19: R.SETRING(D, A, B) {Set A to primary, B to secondary}
20: else if E.TYPE() = ReplicaTimer then
21: M ← O.GETALLMASTERREPLICAS(H.GETNODES())
22: for all C in M do
23: for all N in H.GETCLOSEST(Y-1, C) do
24: N.SEND(CheckKeyRequest, C)
25: else if E.TYPE() = CheckPrimaryTimer then
26: M ← O.GETALLSECONDARYREPLICAS(H.GETNODES())
27: for all C in M do
28: for all N in H.GETCLOSEST(1, C) do
29: N.SEND(CheckKeyRequest, C)

replicas at the desired level frepl.

The primary node for a given keyword is the one closest to the keyword, with

a fixed tie-breaking rule. This node is responsible for the keyword and its as-

sociated objects, and the replication thereof. Each node periodically checks if it

is the primary node for the keywords currently at the node. This check can be

performed locally by comparing the keywords with the node IDs of the nodes

in the leaf-set. It is possible (though unlikely) that for a brief time interval two

or more nodes will consider themselves primary for the same keyword. Such

60

behavior does not reduce accuracy of the search protocol; at worst, it can only

increase replication level. Each node ensures that an object is replicated at the

frepl−1 closest leaf-set members for each of its keywords that map to that node.

Missing replicas are re-created from the primary copy and disseminated to the

appropriate nodes. Replicas are reaped locally at the expiry of their leases.

At an even lower periodic rate, each node verifies that, for each of the sec-

ondary replicas it owns, the primary node for the replica has a copy of the ob-

ject. This additional check ensures that the primary node will eventually have

a copy of the object if there exists a replica somewhere in the network, limiting

the impact of transient routing errors that cause incorrect initial placement of

the replicas. Algorithm 1 illustrates Cubit’s periodic maintenance operations.

3.2.5 Load Balancing

Since search terms tend to follow a Zipf distribution, the resulting skewed load

distribution can lead to excess routing load on nodes within the vicinity of pop-

ular keywords. Traditional DHT-based load balancing techniques [75, 26, 79]

based on object caching by intermediate nodes are not applicable to Cubit, as an

intermediate node can not safely short-circuit a search query unless it can find

an exact match. We introduce a novel load-balancing technique that supports

short-circuiting of queries for approximate matches.

In Cubit, if the load generated by queries for a popular keyword w over-

whelms the available resources of node i, the node manufactures a virtual node

at w with all the information it has on that region in the keyword space. This in-

cludes the objects in the region and the node’s leaf-set, allowing the virtual node

61

Figure 3.4: Cubit’s load-balancing protocol prevents popular keywords
from overwhelming a node. In this example, the keyword
“love” is closest to node A and is generating a high degree
of load. Node A creates a virtual node around the keyword,
which includes its leaf set and all of its objects within a p edit-
distance radius. This virtual node is sent to A’s nearest neigh-
bors to the keyword. Queries that arrive at these neighbors for
keywords within the region can be answered without node A.

to answer queries on its behalf for that region. The virtual node is disseminated

to node i’s moff nearest neighbors to w, which are the most likely locations to in-

tercept and short-circuit search queries for w. Node i is then tasked with keeping

the moff virtual nodes updated with changes to objects in the off-loaded region

as well as changes to its leaf-set. If one of the moff nodes becomes overwhelmed,

it can request node i to increase the off-loading factor moff. Virtual nodes are not

disseminated via gossip and thus do not skew the node distribution. This off-

loading operation disperses hot-spots in keyword popularity without requiring

global information or coordination. Figure 3.4 illustrates the protocol.

62

3.3 Query Routing

The following sections describe protocols that use the basic infrastructure de-

scribed in Section 3.2 to provide the necessary primitives for performing ap-

proximate keyword matching.

3.3.1 Object Insert

An object in Cubit is fully described by a set of keywords. In the case of our

BitTorrent implementation, these keywords are taken from the filename and

embedded comments in the torrent file. The object descriptor is replicated at

the r closest nodes to each of its keywords. The form of the object descriptor is

unrestricted; in our BitTorrent implementation, a object descriptor is made up

of the set of keywords and a pointer to the owner of the torrent file.

When a Cubit node receives an object insertion request, it concurrently is-

sues a closest node search for each keyword using the search protocol described

in the next section. The object is initially inserted at the closest node, and the

closest node further replicates the object to the frepl - 1 closest neighbors to the

keyword, chosen from peers in its leaf-set.

3.3.2 Search Protocol

For non-boolean queries, the goal is to obtain the k* objects nearest to the set

of keywords, as measured by the phrase distance, where k* is a parameter in

the system. For each keyword in the search phrase, the protocol obtains the k*

63

Algorithm 2: SEARCH PROTOCOL

Require:
E: Search event R: Local ring set
U: Outstanding queries H: Leaf set

1: N ← E.GETREMOTENODE()
2: I ← E.GETQUERYID()
3: K ← E.GETFANOUT()
4: T ← E.GETKEYWORD()
5: if E.TYPE() = SearchRequest then
6: A ← GETKCLOSESTNODES(T, K, R + H)
7: N.SEND(SearchReply, I, T, A)
8: else if E.TYPE() = SearchReply then
9: C ← E.GETRESULTS() - CHECKED[I] - PENDING[I]

10: CHECKED[I] ← CHECKED[I] + {N}
11: PENDING[I] ← PENDING[I] + C - {N}
12: A ← CHECKED[I] + PENDING[I]
13: A ← GETKCLOSESTNODES(T, K, A)
14: if A ⊆ CHECKED[I] then
15: for all V in A do
16: V.SEND(FetchObjRequest, I, E.SEARCHTERMS())
17: else
18: for all V in A ∩ C do
19: V.SEND(SearchRequest, I, K, D, T)

closest objects from each node which meets the following edit distance criterion:

its ID is within an edit-distance of q from the keyword, where q is the product

of the keyword length and the expected number of perturbations per character

(which is a parameter in the system). The protocol selects nmin closest nodes

if fewer than nmin nodes meet the criterion, where nmin is called the search

fan-out.

The protocol runs from a fixed node, called the local node. It maintains three

lists: the checked list of nodes that have already been queried, the pending list

of nodes waiting to be checked, and the failed list of nodes such that the corre-

sponding RPC failed or timed out. Initially all three lists are empty.

The protocol inserts the local node into the pending list and enters the fol-

lowing loop. If there exists a node i in the pending list that meets the edit-

distance criterion or is equidistant or closer to the keyword than the closest nmin

64

Figure 3.5: The Cubit search protocol iteratively zooms in on the target re-
gion. In this example, x is the location of the search term in the
keyword space, the solid circles are node A’s peers, empty cir-
cles are other nodes, and the circle around x includes all nodes
within edit-distance q of x. Node A first finds the nmin = 2 clos-
est nodes to x from its peer-set, and requests their nmin closest
nodes. Then two new closer nodes are discovered and sub-
sequently sent the same query. The protocol terminates when
all nodes within the circle around x, or the nmin closest nodes
have been discovered. These nodes are queried for their closest
objects to x.

nodes in the checked list, the local node performs an RPC to node i for some of

the members in its ring sets: either for all nodes that meet the the edit-distance

criterion or for the lmin closest neighbors to the keyword, for some constant

lmin ≥ nmin, whichever is larger. If the RPC fails or times out, node i is moved

from the pending list to the failed list. Otherwise, it is relocated to the checked

list and the new nodes are placed in the pending list unless they have already

been checked or have failed a previous RPC. The loop terminates if such a node

does not exist.

The k* closest objects to the set of keywords are retrieved either from all

checked nodes that meet the edit-distance criterion, or from the nmin closest

checked nodes, whichever set is larger. The collected objects for all the search

terms are ordered by their phrase distance and the k* closest objects are returned

as the result of the search. Algorithm 2 shows the pseudo-code for the search

65

protocol. The edit-distance criterion checks are omitted to improve the clarity

and readability of the protocol. Figure 3.5 illustrates an example search query.

3.3.3 Boolean Queries

Advanced search queries in Cubit are composed of boolean expressions, where

each term in the expression is either a keyword or a phrase. The search protocol

converts a boolean expression into disjunctive normal form, creating a set of

conjunction clauses that are connected by OR operators. It uses the standard

search primitive to find objects within a threshold phrase distance from each

positive term in each clause. The standard search is modified to include all the

negative terms in the same conjunction clause that act as filters, ensuring that it

avoids returning objects within the threshold distance of these negative terms

without requiring explicit searches on them. The union of the results from the

conjunction clauses is returned.

Since the number of objects matching a single keyword can be very large, the

collection of intermediate results are sent as Bloom filters to reduce the band-

width requirement of the protocol. The Bloom filters are of sufficient size to

distinguish between thousands of objects with a very low (0.1%) false-positive

probability and require several orders of magnitude less space than sending the

actual objects. The compressed filters are usually only hundreds of bytes in our

experiments. Since Bloom filters support union and intersection operations, all

intermediate set operations can use the Bloom filters directly. The actual objects

that make up the final filter are fetched from the closest nodes of the positive

search terms in a final request. In this request, the closest nodes are tasked with

66

repeating their previous search but would only return objects that are in the

final filter.

3.3.4 Node Join

A new node first contacts its given seed nodes to obtain their node IDs and,

through a random walk, discovers additional nodes in the network and ob-

tains random keywords from each node. After collecting a sufficient number

of nodes, it issues a closest node search for each received keyword. If the clos-

est node’s ID is different from the keyword used in the search, then the keyword

is used as the node ID for the new node. Simultaneous node joins can, with a

very small probability, result in more than one node with the same ID. In this

case, the leaf-set discovery will ultimately alert the nodes of the collision, and

the node with the lower IP address will drop out and rejoin the system.

Once a unique ID is selected, the new node obtains additional ring members

from the ring members of its closest node. It also retrieves the primary replicas

of objects with keywords that are closer to the new node than the node they are

currently residing at. The protocol for this operates iteratively. It asks each of

its k closest nodes if there are any primary replicas that should be copied to the

new node that it does not already have. If at least one is closer, the protocol

repeats with a larger k until no new primary replicas that should be copied are

discovered.

67

3.3.5 Security

We describe some common attacks targeting the Cubit layer and outline changes

to the routing protocol to address them. These changes may incur small perfor-

mance penalties to query routing. A formal treatment of the security properties

of a gossip-based small-world network is beyond the scope of this chapter.

Keyword Hijacking

An attacker can arbitrarily choose as its node ID a keyword for which it wants to

return false information. Such information censorship is possible with unmod-

ified Cubit, as the correct execution of the node join protocol cannot be verified

by other nodes in the network. To protect against this attack, Cubit can use

a node ID selection protocol that deterministically constructs IDs from the IP

address of the node. Each node is seeded with the same source of keywords,

such as a dictionary, and the hash of the IP address is used as an index into the

keywords for selecting the node ID. A remote node’s ID is verified before it is

added into a node’s ring set or before it is used in query routing. This modi-

fication primarily affects the distribution of objects across the nodes, so the set

of seeded keywords should resemble the keywords in the system. The seeded

keywords should at least be taken from the same language as the keywords in

the system.

Query Disruption

An attacker can try to disrupt query routing by returning false information.

The disruption can be significant in a localized region, prematurely terminating

68

search and insertion queries. This attack can be circumvented without changes

to the existing query protocol by increasing the fan-out factor nmin. A query

only terminates once the top nmin nodes to the search term is found. By in-

creasing the nmin, an attacker has a proportionally smaller influence on query

routing in the region. Queries can typically just route around non-cooperating

nodes. Increasing nmin comes at a price of additional overhead in query rout-

ing. In addition, heavier weight techniques such as PeerReview [42] can be used

to identify misbehaving nodes and cleave them from the network.

Spam Injection

An alternative method to disrupt the system is to increase the noise to signal

ratio of the keywords and objects in the system. This attack can be addressed in

a number of ways. Cubit can provide object insert capabilities only to trusted

users by requiring objects to be signed by a certificate authority. Keyword tar-

geted attacks can be bounded by limiting the injection rate. A node can reject

an insert request if the same node has been repeatedly inserting the same or

similar keyword. A more complete solution is the introduction of a distributed

reputation system (e.g. [27]), where poorly rated objects are either discarded or

are given a lower rank in response to search queries.

Sybil Attacks

Sybil attacks can allow the attackers to take control of a region of the keyword

space. Countermeasures such as [63, 18] can be used to lower the join rate of

the attackers, reducing the extent of the attack, or make the attack prohibitively

69

expensive to undertake, though standard impossibility results apply [30].

3.4 Evaluation

We implemented the full protocol described in the preceding sections as an plu-

gin for the Azureus BitTorrent client. We evaluate Cubit through both a large-

scale simulation on real-world datasets and a physical deployment on Planet-

Lab [11].

3.4.1 Simulation

We use three different real-world datasets to parameterize our simulations. The

first is the Netflix database [68], consisting of 17, 770 movie titles. We collected

our second dataset by crawling a popular BitTorrent website for media files,

consisting of over 39, 000 torrents. These two datasets represent different ex-

tremes, with the Netflix dataset providing clean input with no duplicate en-

tries, in contrast to the much noisier BitTorrent data. Our third dataset is the

CiteSeer [23] database with the titles of over 400, 000 academic papers. While

not representative of file sharing content, the large dataset enables Cubit’s sen-

sitivity to the number of objects in the system to be measured at a much broader

scale.

The system is evaluated against search queries constructed from keywords

of a randomly chosen title, with perturbations introduced to simulate typo-

graphical errors and spelling variations. Only two-thirds of the keywords from

each title were used in each search query to closer emulate typical user behav-

70

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

F
ra

c
ti
o

n
 o

f
S

u
c
c
e

s
s
fu

l
Q

u
e

ri
e

s

Error Probability per Character

NetFlix
BitTorrent

Figure 3.6: Error probability per character vs. accuracy. Queries with
high error probability per character are harder to solve as their
search terms are very distant from the actual keywords they
are derived from in the keyword space.

ior. The error probability per character is the probability that, for each charac-

ter in the search string, the character has been replaced by a random character.

It is a measure of the signal to noise ratio of search keys and is used to con-

trol the difficulty of search queries, where a higher error probability represents

a more difficult query. Additionally, we evaluated search queries where key-

words were modified with real human typographical errors and misspellings

from the SearchSpell database [84].

Because of the skewed distribution of English words and the conservative

way we are measuring success, 100% success is not always possible. For in-

stance, a query with three typographical errors for “Lost Ark” includes “Last

Orc” and might legitimately return an entirely different set of objects; it is pos-

sible for the intended object to not be present among the search results if the

randomly introduced typographical errors veer into a different portion of the

keyword space. We nevertheless retain this conservative success criteria, and

71

indicate the highest achievable success rate as the metric upper-bound where ap-

plicable.

In the following experiments, unless specified otherwise, each test consists

of 4 runs of 1024 nodes, 10 nodes per ring (88.2 peers per node on average),

an error probability per character of 0.25, a search fan-out of 2, a replication

factor of 4, with 1000 search queries for each run. The results are presented as

the mean result of the runs, and error bars represent 95% confidence intervals.

Each simulation run begins from a cold-start, with each new node only knowing

at most 8 existing nodes in the network; additional neighbors are discovered

through the gossip protocol. An equal fraction of the movies are introduced by

each joining node.

Accuracy

We first examine Cubit’s accuracy with search queries with increasing levels of

difficulty. A search query is considered to be successfully resolved if the origi-

nal movie it was derived from is a member of the result set, essentially the first

page of results presented to the user, which is at most 0.1% of the total number

of movies in the system. Our accuracy metric is equivalent to recall, a com-

mon statistical classification used in information retrieval 2. Figure 3.6 shows

that Cubit can successfully answer queries where a third of the characters in the

search string is expected to be erroneous with more than 90% accuracy. Surpris-

ingly, for queries where half the characters in each search keyword are expected

to be perturbed, Cubit is still able to successfully resolve them more than 75%

and 90% of the time for the Netflix and BitTorrent datasets respectively. Cubit
2One cannot meaningfully present precision, the complementary classification to recall, as

our datasets do not include relevance information between objects.

72

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

DHT Cubit

N
u

m
b

e
r

o
f

R
P

C
 R

e
q

u
e

s
ts

 p
e

r
Q

u
e

ry

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

DHT-Soundex
Random

Cubit-Lev
Random

DHT-Soundex
SearchSpell

Cubit-Lev
SearchSpell

Cubit-Damerau
SearchSpell

F
ra

c
ti
o

n
 o

f
S

u
c
c
e

s
s
fu

l
Q

u
e

ri
e

s

(b)

Figure 3.7: (a) Number of RPC requests per query for a DHT-based sys-
tem and Cubit. (b) Fraction of successful queries with key-
words created from random character perturbations and the
SearchSpell database. The dotted lines show the metric upper-
bounds.

achieves a higher accuracy on the BitTorrent dataset because the average num-

ber of words of a BitTorrent title is 6.6, nearly twice that of a Netflix title at 3.6.

A higher number of words per title provides proportionally more keywords per

query which improves search accuracy.

The accuracy metric itself does not capture the amount of work and the num-

ber of nodes must be contacted to answer the query. A DHT can be 100% ac-

curate if it searches for every misspelled version of a keyword, but would also

be highly inefficient. We illustrate the latent costs in Figure 3.7(a). We use a

basic DHT implementation based on Pastry [78] for comparison, with a base

parameter of 16 and a replication factor of 4. The shortest search term is used

by the DHT, as it has the fewest error permutations. For search queries where

exactly one error is introduced to each keyword, a DHT solution requires nearly

900 RPC requests before finding the sought object. In contrast, Cubit requires

only 27 RPC requests, an order of magnitude fewer than the DHT solution, for

73

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1000 2000 3000 4000 5000 6000 7000 8000
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

F
ra

c
ti
o

n
 o

f
S

u
c
c
e

s
s
fu

l
Q

u
e

ri
e

s

N
u

m
b

e
r

o
f

R
P

C
 R

e
q

u
e

s
ts

Number of Nodes

Accuracy
RPC Requests

Figure 3.8: Number of nodes vs. accuracy and the number of RPC requests
per query.

a query accuracy of more than 96%.

Pairing Soundex hashing, a phonetic algorithm for mapping English words

by sound, with DHT routing, as proposed in [105], enables approximate match-

ing without resorting to searching for every possible spelling permutation. Fig-

ure 3.7(b) shows that this approach achieves a success rate of only 64% for key-

words with random character perturbations and 75% for keywords taken from

the SearchSpell database where some of the misspellings are phonetically sim-

ilar. In contrast, Cubit using the standard Levenshtein distance achieves over

94% accuracy for random character perturbations and 83% accuracy for Search-

Spell misspellings. The latter case is due to phonetic misspellings and character

transpositions which make up a significant portion of the SearchSpell database

do not match well with Levenshtein distance. Even an ideal, centralized ser-

vice struggles to meet our definition of accuracy when using the Levenshtein

distance for matching, with a metric upper-bound accuracy of 97% and 86% for

keywords with random character perturbations and SearchSpell misspellings,

respectively.

74

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 50000 100000 150000 200000 250000 300000 350000 400000

F
ra

c
ti
o

n
 o

f
S

u
c
c
e

s
s
fu

l
Q

u
e

ri
e

s

Number of Unique Objects in the System

Figure 3.9: Number of objects in the system vs. fraction of successful
queries using the CiteSeer dataset.

In contrast, Cubit using the Damerau-Levenshtein distance, which counts

the transposition of two characters in a keyword as a single operation, reduces

the distance between the misspellings and their origin word and improves Cu-

bit’s accuracy to just under 90% for SearchSpell misspellings with a metric

upper-bound of 93%. Damerau-Levenshtein based Cubit performs identically

with the same overhead in all other experiments as the Levenshtein version;

the transposition operation only minimally affects the edit-distance between

correctly spelled words, and randomly generated misspellings and their ori-

gin word. These results illustrate the importance of using a distance metric that

closely matches the expected type of errors, and demonstrate that Cubit is sig-

nificantly more accurate than Soundex-based solutions for misspellings drawn

from both random character permutations and real human typographical er-

rors.

75

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20 25 30 35
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

F
ra

c
ti
o

n
 o

f
S

u
c
c
e

s
s
fu

l
Q

u
e

ri
e

s

N
u

m
b

e
r

o
f

R
P

C
 R

e
q

u
e

s
ts

Number of Nodes per Ring

Accuracy
RPC Requests

Figure 3.10: Number of nodes per ring vs. accuracy and the number of
RPC requests per query.

Scalability

Next, we examine the scalability of the Cubit framework by examining its per-

formance in response to varying system sizes. To be able to directly compare

experiments with different numbers of nodes in the network, the number of

nodes per ring is configured to be proportional to the logarithm of the system

size. Figure 3.8 shows that search accuracy is largely independent of the sys-

tem size, with Cubit maintaining a 94% accuracy across the tested system sizes.

These results indicate that the greedy search protocol very rarely terminates pre-

maturely as a small increase in the hop length due to an increase in system size

has a negligible effect on the accuracy. Figure 3.8 also shows how the number

of RPC requests per query grows with the number of nodes. The growth rate

is proportional to the maximal number of hops times the number of nodes per

ring. The former is upper-bounded by a small constant, while the latter is set to

log(#nodes) yielding logarithmic scaling.

Another measure of scalability is Cubit’s sensitivity to the number of unique

76

objects in the network. To allow for a more comprehensive evaluation, we use

the CiteSeer dataset consisting of more than 400, 000 academic paper titles. In

these simulations, rather than returning 0.1% of the total number of unique ob-

jects in the system as the result set, we fix the result set to 10 objects to allow

for a fair comparison. Figure 3.9 shows the accuracy is minimally affected by

an increase in the number of objects in the system. A fifty fold increase in ob-

jects results in less than 3% decrease in search accuracy. The search accuracy on

the CiteSeer dataset is considerably higher than on the Netflix dataset. This is

primarily due to the relatively longer, more distinctive titles found in academic

papers, resulting in a sparser, more search friendly keyword space.

A significant concern with boolean search queries is the large number of

intermediate search objects that must be sent between nodes. Cubit uses Bloom

filters as intermediate storage in order to reduce the bandwidth overhead. To

verify the technique’s effectiveness, we examine the bandwidth requirement of

boolean searches on the Netflix dataset which on average contains 3.6 keywords

per object. In our experiments, we use the conjunction of two-thirds the total

keywords of the object as the boolean search expression. The median bandwidth

used per boolean search query is only 17 KB with only trace amounts of false

positives.

System Parameters

The performance of Cubit depends on several key parameters, such as the num-

ber of nodes per ring and the query fan-out factor. The number of nodes per ring

represents a tradeoff between protocol maintenance and query performance. A

low nodes per ring value provides poor coverage of the space and requires more

77

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 2 3 4 5 6 7 8
 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

F
ra

c
ti
o

n
 o

f
S

u
c
c
e

s
s
fu

l
Q

u
e

ri
e

s

N
u

m
b

e
r

o
f

R
P

C
 R

e
q

u
e

s
ts

Fanout

Accuracy
RPC Requests

Figure 3.11: Search fanout vs. accuracy and the number of RPC requests
per query.

RPC requests to complete a query, where a high nodes per ring value requires

additional state to be kept and maintained at each node. Figure 3.10 shows that

accuracy is mostly unaffected by the number of nodes per ring, in contrast to

the number of RPC per query which decreases dramatically from two nodes

per ring to four, and flattening out at sixteen nodes per ring.

The query fan-out bounds the number of closest nodes a query traverses

simultaneously, and can significantly improve accuracy by circumventing dead-

end paths. For example, a query with a fan-out of two will attempt to find the

two closest nodes to the search term at every step, essentially interweaving two

simultaneous closest node queries without introducing overlaps in the search

space. Figure 3.11 illustrate that increasing fanout from one to two nets a 4%

improvement in accuracy, with further increases netting subsequently smaller

gains. However, the accuracy comes at the cost of requiring additional RPC

requests that increase linearly with the fan-out factor.

The object replication factor also plays a role in the performance of the sys-

78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 2 3 4 5 6 7 8

F
ra

c
ti
o

n
 o

f
S

u
c
c
e

s
s
fu

l
Q

u
e

ri
e

s

Replication Factor

Figure 3.12: Replication vs. accuracy. Modest amounts of replication can
yield significant improvement in accuracy.

tem. Figure 3.12 shows that increasing replication from one to four increases

search accuracy by more than 12%. Increasing the replication factor beyond

four gives only marginal accuracy improvements.

Replication and Churn

The object replication factor trades off accuracy against bandwidth for replica

management. Figure 3.12 shows that increasing replication from one to four in-

creases search accuracy by more than 12%. Increasing replication beyond four

gives only marginal accuracy improvements. The bandwidth requirement is

proportional to the replication factor, the average number of movies per node,

and the node churn rate. To quantify the bandwidth requirement for replica

management, we added churn to our simulations. The node lifetime distri-

bution was collected from our Azureus deployment of more than 6, 000 Cubit

users. Under this realistic churn scenario, the bandwidth required for replica

management is less than 1.6 KB/s for each Cubit node, which compares favor-

79

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

Churn Churn (4 fanout) Churn (8 replicas) Churn (both)

R
e

la
ti
v
e

 C
h

a
n

g
e

 i
n

 t
h

e
 S

u
c
c
e

s
s
 R

a
te

Cubit Configurations

Figure 3.13: Relative change in accuracy due to churn. The first bar shows
that realistic churn rates have modest effects. Optimizations,
including increased fanout, increased object replication, and
both combined, can compensate for the effects of churn.

ably to 2 KB/s used for the maintenance of the BitTorrent DHT on a host with a

32 KB/s upstream connection [14].

Beyond its effect on maintenance traffic, node churn can also negatively af-

fect search accuracy. This is primarily due to stale ring members that create

“holes” in the keyword space, preventing queries from routing to the target re-

gion. However, introducing node churn into the simulation results in a barely

perceptible decrease in search accuracy (Figure 3.13). This is because the gossip

rate is sufficiently high to detect and remove stale ring members. In our deploy-

ment, an average ring member receives a gossip request every two minutes,

and the measured median lifetime of a node is 20 minutes. Raising the values

of other system parameters, such as the query fan-out and replication factor,

provides ways to maintain search accuracy under even higher levels of churn.

80

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

L
o

a
d

 R
e

d
u

c
ti
o

n
 o

f
th

e
 T

o
p

 1
0

 N
o

d
e

s
 (

%
)

#
 o

f
Q

u
e

ri
e

s
 t

h
a

t
F

re
q

u
e

n
t

th
e

 T
o

p
 1

0
 N

o
d

e
s

Off-load Fanout

Load Reduction (%)
Average Load

Figure 3.14: Offload fanout vs. load at hotspots. Cubit’s load balancing
protocol is able to significantly spread the load away from
load hotspots.

Load-balancing

We next examine how well the load-balancing protocol disperses hotspots in

query routing. In this experiment, we overload the system by issuing a mis-

spelled keyword query from 100 random nodes. In response, the top ten most

highly frequented nodes request their neighbors to create virtual nodes. We

then repeat the queries and compare the concentration of queries that frequent

the top ten most visited nodes before and after virtual node creation. We vary

the offload fan-out γ and plot the average number of queries that frequented

the top ten nodes and their reduction in average load. Figure 3.14 shows that

the Cubit load-balancing protocol is effective at reducing the load at request

hotspot through the introduction of virtual nodes. Even an off-load fanout of 8

can reduce the load by more than 40% on average.

81

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

F
ra

c
ti
o

n
 o

f
S

u
c
c
e

s
s
fu

l
Q

u
e

ri
e

s

Error Probability per Character

Figure 3.15: Error probability per character vs. the accuracy in the
Azureus deployment.

3.4.2 Azureus Deployment

We implemented a Cubit plugin for the Azureus BitTorrent client to provide

approximate matching of available torrents. The torrents are currently taken

from crawls of popular torrent websites and from trackerless torrents in the

Azureus DHT. Torrents in the system automatically expire after a set time-out;

persistence beyond a single time-out requires reinjections, similar to trackerless

torrents.

The system is currently deployed, with 107 PlanetLab nodes acting as gate-

way nodes to the network. More than 10, 000 torrents have been injected into

the system. We examine Cubit’s accuracy on the Azureus deployment by is-

suing 125 search queries with different error probability per character values.

Figure 3.15 shows that Cubit can successfully answer queries where half the

characters are expected to be perturbed with more than 90% accuracy which

closely matches our simulation predictions. The plugin has been made publicly

available at the Cubit project website [99]. There are currently more than 6, 000

82

active users of the Cubit plugin.

3.5 Summary

This chapter describes Cubit, the first peer-to-peer overlay to provide an effi-

cient approximate match primitive. The key insight behind Cubit is to create

a keyword metric space that captures the relative similarity of keywords, to

assign portions of this space to nodes in a light-weight overlay and to resolve

queries by efficiently routing them through this space, allowing Cubit to quickly

identify approximately matching objects to a set of search terms.

Cubit has been implemented as a BitTorrent client plugin with more than

6, 000 active users, and evaluated through a PlanetLab deployment as well as

through extensive simulations using large, real-world datasets. The evaluation

indicates that Cubit is scalable, accurate, and efficient – it uses an order of mag-

nitude less communication than naive extensions to DHT systems and is signif-

icantly more accurate than systems based on Soundex hashing. The technique

is immediately applicable to domains, such as peer-to-peer filesharing, where

query terms are provided by users and require a decentralized approximate

match against objects in the system.

83

CHAPTER 4

GEOGRAPHIC LOCATION OF INTERNET HOSTS

Determining the physical location of an Internet host is a key enabler for a

wide range of network services. Accurately determining the position of a node

in the real world based solely on network measurements, however, poses many

challenges. The key obstacles to accurate and precise geolocalization are three-

fold: how to represent network locations for nodes, how to extract constraints

on where nodes may or may not be located, and how to combine these con-

straints to yield good estimates of node position 1.

This chapter presents a novel, comprehensive framework for geolocating In-

ternet hosts called Octant 2. Octant provides a framework which represents

node positions precisely using regions, expresses constraints succinctly as areas,

and computes positions accurately by solving a system of geometric constraints.

A small number of landmarks whose positions are approximately known an-

chor the constraint system to the physical globe. The Octant approach is com-

prehensive and general; it enables almost all past work on geolocalization to

be expressed within the framework, as a (limited) subset of the techniques de-

scribed in this paper.

4.1 Framework

The goal of the Octant framework is to compute a region βi that comprises the

set of points on the surface of the globe where node i might be located. This

1In this context, accuracy refers to the distance between the computed point estimate and the
actual location of the target. In contrast, precision refers to the size of the region in which a target
is estimated to lie.

2An octant is a navigational instrument used to obtain fixes.

84

Figure 4.1: Location representation in Octant. Octant represents the es-
timated target location as a region bounded by a set of Bézier
curves. Each curve a, b, c consists of four control points P0, ..., P3

with P0 and P3 as the start and end points respectively and P1

and P2 as control points that help direct the curve. This fig-
ure requires a total of only nine control points to precisely de-
fine. Bézier curves provide a compact way to represent large,
complex areas precisely. They also admit efficient intersection,
union, and subtraction operations.

estimated location region βi is computed based on constraints γ0 . . . γn provided to

Octant.

A constraint γ is a region on the globe in which the target node is believed

to reside, along with an associated weight that captures the strength of that be-

lief. The constraint region can have an arbitrary boundary, as in the case of zip-

code information extracted from the WHOIS database or coastline information

from a geographic database. Octant represents such areas using Bézier-regions,

which consist of adjoining piecewise Bézier curves as illustrated in Figure 4.1.

Bézier curves are polynomial parametric curves with n+1 control points P0, ..., Pn

where n is the order of the polynomial, with n = 3 for most implementations.

85

Figure 4.2: Comprehensive use of positive and negative constraints in Oc-
tant. (a) A primary landmark, with a precise position estimate,
and its associated constraints. (b) Positive constraints are calcu-
lated by taking the union of all circles in the estimated area. A
node within distance d must reside in the region marked with
the dark outer line. Only a subsample of the circles are shown
for clarity. (c) Negative constraints are computed by taking the
intersection of all circles in the estimated area. A node out-
side of distance d can not be in the region marked with the
dotted line. (d) A secondary landmark, whose position is not
known precisely. Note that the associated constraints lead to a
larger annulus, due to the conservative, sound way in which
Octant combines them. An implementation may replace com-
plex Bézier regions with a bounding circle for efficiency.

Intuitively, the points P0 and Pn are the start and end points with the remaining

points providing the directional information. Bézier regions provide both pre-

cise and compact representation of complex shapes. For example, a circle can

be represented exactly using four adjoining Bézier curves and a total of twelve

control points.

Typically constraints are obtained via network measurements from a set of

nodes, called landmarks, whose physical locations are at least partially known.

Every landmark node L j has an associated estimated location region βL j , whose

size captures the amount of error in the position estimate for the landmark.

86

Figure 4.3: Octant computes an estimated location region for a target
node by combining positive and negative information avail-
able through latency measurements. The resulting location es-
timate comprises non-convex, potentially disjoint regions sep-
arated by weight.

We call a node a primary landmark if its position estimate was created via some

exogenous mechanism, such as a GPS measurement or by mapping a street ad-

dress to global coordinates. Typically, primary landmarks have very low error

associated with their position estimates. We call a node a secondary landmark if

its position estimate was computed by Octant itself. In such cases, βL j is the

result of executing Octant with the secondary landmark L j as the target node.

Octant enables landmarks to introduce constraints about the location of a tar-

get node based either on positive or negative information. A positive constraint

is of the form “node A is within x miles of Landmark L1,” whereas a negative

constraint is a statement of the form “node A is further than y miles from Land-

mark L1.” On a finite surface, such as the globe, these two statements both lead

to a finite region in which the node is believed to lie. However, the nature of

the constraint, either positive or negative, makes a big difference in how these

87

regions are computed.

In the simple case where the location of a primary landmark is known with

pinpoint accuracy, a positive constraint with distance d defines a disk with ra-

dius d centered around the landmark in which the node must reside. A nega-

tive constraint with distance d′ defines the complement, namely, all points on

the globe that are not within the disk with radius d′. In typical Octant oper-

ation, each landmark L j contributes both a positive and a negative constraint.

When the source landmark is a primary whose position is known accurately,

such constraints define an annulus.

Octant enables meaningful extraction of constraint regions even when the

position of the landmark is approximate and consists of an irregular region. For

a secondary landmark k whose position estimate is βk, a positive constraint with

distance d defines a region that consists of the union of all circles of radius d at

all points inside βk (formally, γ =
⋃

(x.y)∈βk
c(x, y, d) where c(x, y, d) is the disk with

radius d centered at (x, y)). In contrast, a negative constraint rules out the possi-

bility that the target is located at those points that are within distance d regard-

less of where the landmark might be within βk (formally, γ =
⋂

(x,y)∈βk
c(x, y, d)).

Given the description above, it may seem that computing these intersection

and union regions might take time proportional to the area of βk, and thus be

infeasible. Octant’s representation of regions using Bézier curves enables these

operations to be performed very efficiently via transformations only on the end-

points of Bézier segments. Since Bézier curves are used heavily in computer

graphics, efficient implementations of Bézier clipping and union operations are

available. However, the number of Bézier segments in a region increases with

each intersection and union operation, which gradually expands the number of

88

curves to track and manipulate, which in turn poses a limit to the scalability

of the framework. So a scalable Octant implementation may decide to approxi-

mate certain complex βk with a simple bounding circle in order to keep the num-

ber of curves per region in check and thus gain scalability at the cost of modest

error. Figure 4.2 illustrates the derivation of positive and negative constraints

from primary and secondary landmarks.

Given a set Ω of positive constraints and a set Φ of negative constraints on

the position of a target node i, the estimated location region for the target is

given by:

βi =
⋂
Xi∈Ω

Xi \
⋃
Xi∈Φ

Xi. (4.1)

This equation is precise and lends itself to an efficient and elegant geomet-

ric solution. Figure 4.3 illustrates how Octant combines constraints to yield an

accurate estimated location region for a target.

There are, however, many issues to solve before this approach can be used

for practical geolocalization on the Internet. In the general formulation above,

all constraints are weighted equally and the solution is discrete; a point is either

part of the solution space or it is not. A discrete solution strategy leads to a brit-

tle system, as a single erroneous constraint will collapse the estimated location

region down to the empty set. One strategy is to use only highly conservative

positive constraints derived from the speed of light and avoid all negative con-

straints. We show later that such a conservative strategy does not achieve good

precision. In the next set of sections, we detail optimizations that enable the ba-

sic Octant framework to be applied to noisy and conflicting measurements on

89

the Internet.

If latencies on the Internet were directly proportional to distances in the real

world, the geolocalization problem would be greatly simplified. Three factors

complicate Internet latency measurements. First, the Internet consists of het-

erogeneous links, hosts and routers whose transmission and processing speeds

vary widely. Second, inelastic delays incurred on the last hop can introduce ad-

ditional latencies that break the correspondence between round trip timings and

physical distances. Finally, packets often follow indirect, circuitous paths from

a source to a destination, rendering great-circle approximations inaccurate. In

the next three sections, we address each of these problems in turn.

4.1.1 Mapping Latencies to Distances

The network latency between a target and a landmark physically bounds their

maximum geographical distance. A round-trip latency measurement of d mil-

liseconds between a landmark and a target can be translated into a distance con-

straint using the propagation delay of light in fiber, approximately 2
3 the speed

of light. This yields a conservative positive constraint on node locations that

can then be solved using the Octant framework to yield a sound estimated po-

sition for the target; such an estimate will never yield an infeasible (∅) solution.

In practice, however, such constraints are so loose that they lead to very low

precision.

Yet the correlation between latency measurements and real-world distances

is typically better and tighter than constraints based on the speed of light. Fig-

ure 4.4 plots the network latency against physical distance from a primary land-

90

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60 70 80 90 100

D
is

ta
n
c
e
 (

K
M

)

Latency (ms)

Convex hull
50% of nodes
75% of nodes

Hull with 50% cutoff
Hull with 75% cutoff

Spline approximation
2/3 the speed of light

Figure 4.4: The latency-to-distance plot of peer landmarks for a represen-
tative landmark (planetlab1.cs.rochester.edu). The shaded re-
gion denotes the valid point locations as bounded by the prop-
agation delay time of light in fiber. The convex hull around
the data-points serves as the positive and negative constraints
for the node. For a given latency, the top and bottom of the
hull represent the outer and inner radius respectively of the
constraint annulus. As distances increase, fewer representa-
tive nodes remain, rendering the convex hull overly aggres-
sive. Vertical lines indicate the 50 and 75th percentile cutoffs,
where the convex hull is cut and replaced with conservative
positive and negative constraints when insufficient representa-
tive nodes remain.

mark (planetlab1.cs.rochester.edu) to all other primary landmarks in our study.

The figure makes clear the loose correlation between physical distance and il-

lustrates how overly conservative the speed of light bounds can be. In addition,

the empty region to the lower right suggests that few links are significantly con-

gested; nodes that are physically close are typically reachable in a short amount

of time. This presents an opportunity for a system wishing to aggressively ex-

tract constraints at the risk of occasionally making overly aggressive claims, to

91

both tighten the bounds on positive constraints and to introduce negative con-

straints.

Octant calibrates each landmark when the landmark is initialized as well as

periodically to determine the correlation between network measurements per-

formed from that landmark and real-world distances. The goal of the calibra-

tion step is to compute two bounds RL(d) and rL(d) for each landmark L and

latency measurement d such that a node i whose ping time is d will be between

rL(d) ≤ ||loc(L) − loc(i)|| ≤ RL(d). This permits Octant to extract a positive and a

negative constraint for each measurement made from each landmark. Note that

when rL(d) = 0, the negative constraint is defunct and does not play a role in lo-

calization; for nodes that are so close that ping times are dominated by queuing

delays, rL should be zero.

A principled approach is used to conservatively pick RL and rL. Each land-

mark periodically pings all other landmarks in the system, creating a correlation

table much like Figure 4.4. It then determines the convex hull around the points

on the graph. Functions RL and rL correspond to the upper and lower facets of

the convex hull. This approach for extracting constraints is both tight and con-

servative. The RL and rL bounds do not contradict any empirical results, as the

convex hull envelopes all data points measured at the landmark. The bounds

are significantly tighter than bounds derived from linear functions used in pre-

vious techniques [38]. And the convex hull facets are smooth, positively sloped,

and closely track the average latency to distance correlation.

In practice, this approach yields good results when there are sufficient

landmarks that inter-landmark measurements approximate landmark-to-target

measurements. In cases where the target has a direct and congestion-free path

92

to the landmark, it may lie beyond RL(d), and vice versa for rL(d). While ex-

tensions to Octant we discuss later can compensate for occasional errors, the r

and R estimates may be systematically wrong when there are just insufficient

landmarks to draw statistically valid conclusions. Consequently, Octant intro-

duces a cutoff at latency ρ, such that a tunable percentile of landmarks lie to

the left of ρ, and discards the part of the convex hull that lies to the right of

ρ. That is, only the part of the convex hull for which sufficient data points are

available is taken into consideration. Octant then uses rL(x) = rL(ρ),∀x ≥ ρ,

and RL(x) = m(x − ρ) + RL(ρ),m = (yz − RL(ρ))/(xz − ρ), where a fictitious sentinel

datapoint z, placed far away, provides a smooth transition from the aggressive

estimates on the convex hull towards the conservative constraints based on the

limits imposed by the speed of light.

4.1.2 Last Hop Delays

Mapping latencies to distances is further complicated by additional queuing,

processing, and transmission delays associated with the last hop. For home

users, these last hop delays can be attributed to cable and DSL connections that

are often under-provisioned. Even in the wide area, the processing overhead on

servers adds additional time to latency measurements that can overshadow the

transmission delays. For instance, on overloaded Planetlab nodes, measured la-

tencies can be significantly inflated even with careful use of kernel timestamps.

Consequently, achieving more accurate and robust localization results requires

that we isolate the inelastic delay components which artificially inflate latency

measurements and confound the latency to distance correlation.

93

Ideally, a geolocalization system would query all routers on all inter-node

paths, isolate routers that are present on every path from each node, and asso-

ciate the queuing and transmission delays of these routers along with the node’s

average processing delay as the inelastic component of the node. Since this ap-

proach is impractical, we need a feasible way to approximate the last hop delay

from latency measurements.

Three properties of the problem domain motivate an end-to-end approach

to the measurement and representation of last hop delay in Octant. First, lo-

calization needs to be performed quickly without the cooperation of the target

host. This rules out the use of precise timing hardware for packet dilation, as

well as software approaches that require pre-installed processing code on the

target. Second, creating detailed maps of the underlying physical network, as

in network tomography [96, 15], entails significant overhead and does not yet

provide answers on the timescales necessary for on-the-fly localization. Third,

Octant has mechanisms in place to accommodate uncertainty in constraints (sec-

tion 4.1.4) and can thus afford imprecision in its last hop delay estimates. These

properties led us to use a fast, low-overhead, end-to-end approach for capturing

the last hop delay seen on measurements from a given host in a single, simple

metric which we call height.

Octant derives height estimates from pair-wise latency measurements be-

tween landmarks. Primary landmarks, say a, b, c, measure their latencies, de-

noted [a, b], [a, c], [b, c]. The measure for latency is the round-trip time, which

captures the last hop delays in both link directions. Since the positions of pri-

mary landmarks are known, the great circle distances between the landmarks

can be computed, which yield corresponding estimates of transmission delay,

94

denoted (a, b), (a, c), (b, c). This provides an estimate of the inelastic delay com-

ponent between any two landmarks 3; for instance, the inelastic delay compo-

nent between landmarks a and b is [a, b] − (a, b). Octant determines how much

of the delays can be attributed to each landmark, denoted a′, b′, c′, by solving

the following set of equations:

1 1 0

1 0 1

0 1 1

a′

b′

c′

 =

[a, b] − (a, b)

[a, c] − (a, c)

[b, c] − (b, c)

Similarly, for a target t, Octant can compute t′,as well as an estimate of the

longitude and latitude, tlong and tlat, by solving the following system of equa-

tions:

a′ + t′ + (a, t) = [a, t]

b′ + t′ + (b, t) = [b, t]

c′ + t′ + (c, t) = [c, t]

where (a, t) can be computed in terms of along, alat, tlong, tlat. We can then solve

for the t′, tlong, tlat that minimizes the residue. The computed tlong and tlat result,

similar to the synthetic coordinates assigned by [25], has relatively high error

and is not used in the later stages. The target node itself need not participate

in the solution for its height, except by responding to pings from landmarks.

Figure 4.5 shows the heights of the landmarks in our PlanetLab dataset.

3Note that this difference might embody some additional transmission delays stemming
from the use of indirect paths. We expand on this in the next section.

95

Figure 4.5: Heights computed by Octant to capture last hop delays on net-
work paths to geographically distributed landmarks. Vertical
bars represent landmarks, their position corresponds to their
physical location, while the length of the bars corresponds to
their assigned heights.

Given the target and landmarks’ heights, each landmark can shift its RL up if

the target’s height is less than the heights of the other landmarks, and similarly

shift its rL down if the target’s height is greater than the heights of the other

landmarks. This provides a principled basis for ensuring that at least a fraction

of the time packets spend in the last hop do not skew the derived constraints.

96

4.1.3 Indirect Routes

The preceding discussion made the simplifying assumption that route lengths

between landmarks and the target are proportional to great circle distances.

Studies [80] have shown that this is often not the case in practice, due to pol-

icy routing. For instance, routes between subscribers in Ithaca, NY and Cornell

University traverse Syracuse, NY, Brockport, IL, and New York City before get-

ting routed back to Cornell, traveling approximately 800 miles to cover less than

a mile of physical distance. A geolocalization system with a built-in assumption

of proportionality would not be able to achieve good accuracy.

Note that the preceding section on height computation addresses some, but

not all, of the inaccuracies stemming from indirect routes. In the example above,

if all packets from this landmark get routed through Syracuse, NY, the distance

between Ithaca and Syracuse will be folded into the landmark’s height, enabling

the landmark to accurately compute negative information even for nodes that

are near it (without the height, the landmark might preclude its next door neigh-

bors from being located in Ithaca). The height optimization, however, does not

address inaccuracies stemming from the inconsistent, or unexpected use of indi-

rect routes. Specifically, nodes with otherwise low heights might choose unex-

pectedly long and circuitous routes for certain targets. This occurs often enough

in practice that accurate geolocalization requires a mechanism to compensate

for its effects.

Octant addresses indirect routes by performing piecewise localization, that

is localizing routers on the network path from the landmarks to the target se-

rially, using routers localized on previous steps as secondary landmarks. This

approach yields much better results than using just end-to-end latencies, and is

97

illustrated in Figure 4.6. Since Octant can perform localization based solely on

round-trip timings, localizing routers does not require any additional code to be

deployed.

While the Octant framework can be used as is to locate routers, the struc-

tured way in which most routers are named enables Octant to extract more pre-

cise information about their location. Octant performs a reverse DNS lookup

on each router on the path and determines the city in which it resides by using

the undns [90] tool, which extracts locations from ISP-specific naming patterns

in router names. The city names for routers with city information are converted

into geographical coordinates using data from the US census zipcode database.

A given city can have multiple coordinates in the database, with each repre-

senting the location of a zipcode region. The location of a router of a given city

is the bounding circle encompassing the city’s coordinates with a tunable slack

to account for large zipcode regions. This approach yields much better results

than using just end-to-end latencies, as routes between routers separated by a

single link is largely void of indirect routing.

4.1.4 Handling Uncertainty

A mechanism to handle and filter out erroneous constraints is critical to main-

taining high localization accuracy. The core mechanism Octant uses is to assign

weights to constraints based on their inherent accuracy.

For latency-based constraints, we have observed that the accuracy of con-

straints from landmarks that have high latency to the target are less trustwor-

thy than those that are nearby. The simple intuition behind this is that the in-

98

Figure 4.6: The use of intermediate routers as secondary landmarks can
significantly increase localization accuracy. Octant is used first
to determine the estimated location area for a router. Where
possible, Octant refines location estimates based on the city, ex-
tracted from the router’s DNS name with undns, in which the
router is located. This is shown for Indianapolis and Houston,
where dots represent the center of every zipcode located in that
city. For Buffalo and Kansas City, the location of the routers is
computed using Octant without undns information. The rings
around Buffalo and Ithaca are omitted for clarity.

crease in latency is either due to far-away nodes that have a higher probability of

traversing through indirect, meandering routes or travel along paths that have

high congestion, which often results in constraints that are of relatively little use

compared to nearby nodes.

Octant uses a weight system that decreases exponentially with increasing

latency, thereby mitigating the effect of high-latency landmarks when lower la-

tency landmarks are present. A weight is associated with each constraint based

99

on the latency between the originating landmark and the target node. When

two regions overlap, the weights are added together. In the absence of weights,

regions can be combined via union and intersection operations, leading to a dis-

crete solution for a location estimate - the node is either within a region, or lies

outside. The introduction of weights changes the implementation. When two

regions overlap, Octant determines all possible resulting regions via intersec-

tions, and assigns the associated weight to each. The final estimated location

region is computed by taking the union of all regions, sorted by weight, such

that they exceed a desired weight or region size threshold.

Weights enable Octant to integrate constraints of questionable verity into

the system. Recall that, when the resulting area is the empty set, going back

and finding the minimal set of constraints that led to an infeasible solution is an

NP-complete problem. Weights allow conflicting information to be introduced

into the system at little risk of over-constraining the final system and reducing

its effectiveness; overaggressive constraints from latency measurements, incor-

rect zipcode from WHOIS, or misnamed routers in undns will not just render

the solution down to the empty set. Bad constraints may still impact accuracy

if there are no compensating factors, but weights enable Octant to associate a

probability measure with regions of space in which a node might lie.

4.1.5 Iterative Refinement

Localization in the Octant framework can be broken down into two phases. The

first is to use accurate and mostly conservative constraints to construct an esti-

mated location region that contains the target with high probability. A second

100

optional phase is to use less accurate and more aggressive constraints to obtain

a better estimate of the target location inside the initial estimated region.

In section 4.1.1, we introduced a scheme by which tight bounds can be es-

tablished for the negative and positive constraints. While that approach, based

on computing the convex hull that includes all inter-landmark measurements,

achieves high accuracy in practice, it may sometimes return estimated location

regions that are too big and imprecise. The reader will observe that it may be

possible to use even more aggressive constraints than those dictated by the dis-

cussion so far and achieve smaller estimated location regions. The downside

of more aggressive constraints is that they may yield an infeasible system of

constraints, where the estimated region collapses down to the empty set. In be-

tween these two extremes is a setting at which constraints are set just so that the

feasible solution space is below a desired parameter. Iterative refinement is an

extension to the basic Octant framework to find this setting.

During the calibration phase, Octant additionally computes for each land-

mark the interpolated spline that minimizes the square error to the latency-to-

distance data-points of its inter-landmark measurements, as shown with the

dashed lines in Figure 4.4. Opportunistic positive constraints are then derived

from the spline by multiplying the spline by a constant δ, while negative con-

straints are computed by dividing the spline by δ. The value of δ is chosen such

that the upper and lower bound contains a given percent of the total number of

data points.

Octant initially uses the constraints obtained from the convex hull to com-

pute, typically, a relatively large estimated location area. It then uses this area

as a clipping region, which enables it to run through subsequent iterations very

101

Figure 4.7: Using the city constraints to localize the planet-
lab2.flux.utah.edu target can significantly reduce the estimated
region size as the uninhabited areas between the cities can be
removed.

quickly, as it can discard all regions that lie outside the initial solution space.

The iterative refinement stage then steps through values for δ, recomputing the

estimated location area with successively tighter constraints. The process can

terminate when the solution space is below a targeted area, is empty, or when

a timeout is reached. This optimization enables Octant to determine how ag-

gressively to extract constraints from the network automatically, without hand

tuning.

4.1.6 Geographical Constraints

In addition to constraints extracted from latency measurements, Octant enables

any kind of geographical constraint, expressed as arbitrary Bézier-regions, to

be integrated into the localization process. In particular, Octant makes it pos-

sible to introduce both positive (such as zipcodes from the WHOIS database,

zipcodes obtained from other users in the same IP prefix [71]) and negative con-

102

straints (such as oceans, deserts, uninhabitable areas) stemming from geogra-

phy and demographics. Clipping estimated location regions with geographic

constraints can significantly improve localization accuracy. Since it is highly

unlikely for the system to have landmarks in such areas, negative information

is typically not available to rule them out. As a result, estimated regions can

extend into oceans. In prior work, which does not permit non-convex regions,

the removal of such areas typically requires an ad hoc post-processing step. In

contrast, Octant can naturally accommodate such constraints during its estima-

tion process. The application of geographic data, such as ocean boundaries, and

demographic data, such as population density maps, can vastly improve pre-

cision. Figure 4.7 shows the city constraints for a target node in Utah, which

is otherwise quite difficult to localize precisely due to its distance to all other

landmarks and terrain features.

4.1.7 Point Selection

The Octant approach to localization computes a final estimated localization re-

gion which captures the system’s best estimate of where the target must lie.

Some applications can use such area estimates directly. For instance, web ap-

plications might generate content, such as real estate listings, based on the po-

tential zipcodes in which the viewer may be located. Octant can provide the

area as either Bézier curve bounded surfaces or an ordered list of coordinates

to these applications. Yet many legacy applications, as well as past work, such

as GeoPing and GeoTrack, localize targets to a single point. In order to support

legacy applications and provide a comparison to previous work, Octant uses a

Monte-Carlo algorithm to pick a single point that represents the best estimate

103

of the target’s location. The system initially selects thousands of random points

that lie within the estimated region. Each point is assigned a weight based on

the sum of its distances to the other selected points. After some number of tri-

als, the point with the least weight is chosen as the best estimate of the target’s

location. This point is guaranteed to be within the estimated location area by

definition, even if the area consists of disjoint regions. Ideally, Octant’s point

selection interface would only serve in a transitional role for legacy application

support. We hope that future applications will be made general enough to take

advantage of the extra information in Octant’s estimated area.

4.2 Implementation

The Octant framework for geolocalization is practical, entails low measurement

overhead and is computationally inexpensive to execute. The core operations

involve the manipulation of Bézier curves, which is a compact representation

of curves specified by four control points. Standard libraries support common

operations, such as intersection, subtraction, and union on Bézier curves, and

implement them efficiently by manipulating only the control points [32]. In ad-

dition, Bézier curves are robust to slight inaccuracies in their control points [6].

Our Octant implementation does not depend on having control of the target

node, or the intermediate routers between the landmarks and the target. Ideally,

the target should respond to probes consistently and quickly. A target behind

a slow last mile link, or a slow target that incurs high interrupt and processing

latencies for all responses will have its response latency factored into its height,

which will then compensate for the node’s slower speed. Targets that are incon-

104

sistent can pose problems; our current implementation performs 10 ICMP pings

and uses the minimum RTT time as the basis for extracted constraints.

Overall, the code consists of 9800 lines of code, whose structure enables it

to operate as a third party service, providing geolocalization results given an IP

address using only about 50 nodes deployed on the Internet. When a new land-

mark comes online, it goes through the calibration phase, measures its latencies

to other landmarks, and ships its results back to a centralized server. From then

on, the landmarks simply perform ping measurements to target IP addresses

and report their results to the centralized server. The server performs the lo-

calization by combining the constraints. On a 2GHz machine, this operation

currently takes a few seconds once the landmarks are calibrated. The system

can easily be made decentralized or optimized further, though our focus has

been on improving its accuracy rather than its speed, which we find reasonable.

4.3 Evaluation

We evaluated Octant using physical latency data collected from a PlanetLab

dataset consisting of 51 PlanetLab [11] landmark nodes in North America, as

well as a public traceroute server dataset consisting of 53 traceroute servers

maintained by various commercial and academic institutions in North Amer-

ica. The latency data for the PlanetLab dataset and the public traceroute servers

dataset were collected on Feb 1, 2006 and Sept 18, 2006, respectively, using 10

time-dispersed ICMP ping probes to measure round-trip times. Kernel times-

tamps were used in the latency measurements to minimize timing errors due to

overloaded PlanetLab nodes. To evaluate the efficacy of using secondary land-

105

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
ta

rg
e

ts

Accuracy (miles)

Octant
GeoLim

GeoPing
GeoTrack

Figure 4.8: Comparison of the accuracy of different localization techniques
in the PlanetLab dataset. Octant achieves significantly greater
accuracy than previous work, yielding point estimates for
nodes that are substantially closer to the real positions of the
targets.

marks, we also collected the full traceroute information between every land-

mark and target pair, as well as latency data between the landmarks and in-

termediate routers. Whenever appropriate, we repeat measurements 10 times,

randomizing landmark selection, and plot the standard deviation.

Evaluating the accuracy of a geolocalization system is difficult, because it

necessitates a reliable source of IP to location mappings that can be used as

the “ground truth.” Such an authoritative mapping is surprisingly difficult to

obtain. Our evaluation relies on a total of 104 targets, chosen from the PlanetLab

and the traceroute server

datasets as described below. We limit our study to North America as the

number of PlanetLab nodes on other continents is too few to yield statistically

significant results. We vary the number of landmarks inside North America to

106

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45 50

C
o

rr
e

c
tl
y
 l
o

c
a

liz
e

d
 n

o
d

e
s
 %

Number of landmarks

Octant
GeoLim

Figure 4.9: The percentage of targets inside the Octant’s location estimate
is significantly higher than GeoLim’s due to Octant’s mecha-
nisms for handling uncertainty of individual landmark’s loca-
tion estimate.

examine the behavior of the system at lower densities.

In our PlanetLab dataset, nodes serve both as landmarks and targets, fol-

lowing [71, 38]; of course, the node’s own position information is not utilized

when it is serving as a target. No two hosts in our evaluation reside in the same

institution, which rules out simple yet unrealistic and unscalable solutions to

geolocalization that rely on having a nearby landmark for every target.

The traceroute servers in the public traceroute server dataset are used only

as targets, with 32 PlanetLab nodes serving as landmarks. The individual tracer-

oute server owners specify the location of their traceroute servers as part of the

traceroute service. However, these self-provided locations are often erroneous;

we eliminate nodes whose reported positions violate speed of light constraints

or disagree with a commercial IP geolocation database [2] from consideration.

107

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 10 15 20 25 30 35 40 45 50

A
re

a
 o

f
lo

c
a

ti
o

n
 e

s
ti
m

a
te

 (
m

ile
s
^2

)

Number of landmarks

Octant
GeoLim

Figure 4.10: The area of Octant’s location estimate is significantly smaller
than GeoLim’s across all tested number of landmarks.

We first compare Octant with GeoLim, GeoPing, and GeoTrack on the Plan-

etLab dataset. We evaluate these approaches based on their accuracy and pre-

cision, and examine how these two metrics vary as a function of the number of

landmarks and average inter-landmark distance. We examine accuracy in terms

of two metrics: one is the distance between the single point estimate returned

by these geolocalization techniques and the physical location of the node, while

the other is the percent of nodes whose real-world locations reside within the

estimated location area. The former metric allows us to compare Octant to pre-

vious systems, such as GeoPing and GeoTrack, that compute only a point es-

timate, and evaluates how well these systems perform for legacy applications

that rely on a single point position. The latter, applicable only to recent geolo-

calization systems including Octant and GeoLim and proposed by GeoLim [38],

evaluates how well area-based approaches perform. Note that comparisons us-

ing the latter metric need to be accompanied by measurements on the size of the

estimated area (otherwise a simple solution containing the globe will always lo-

108

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 15 20 25 30 35 40 45 50

A
v
e

ra
g

e
 a

c
c
u

ra
c
y
 (

m
ile

s
)

Number of landmarks

Octant
GeoLim

GeoPing

Figure 4.11: The average distance between a target’s physical location and
the single point estimate returned for that target. Octant
achieves high accuracy with low numbers of landmarks.

cate the node accurately), which we also provide.

Figure 4.8 shows the accuracy of different geolocalization techniques by plot-

ting the CDF of the distance between the position estimate and the physical lo-

cation of a node. Octant significantly outperforms the other three techniques

across the entire set of targets. The median accuracy of Octant is 22 miles, com-

pared to median accuracy of 89 miles for GeoLim, 68 miles for GeoPing and 97

miles for GeoTrack. GeoLim was not able to localize approximately 30% of the

targets, as its overaggressive constraint extraction leads to empty regions. Even

the worst case under Octant is significantly lower than the worst cases encoun-

tered with other techniques. The worst case under Octant, GeoLim, GeoPing

and GeoTrack are 173, 385, 1071, and 2709 miles, respectively.

A median error of 22 miles is difficult to achieve based solely on constraints

obtained online from uncoordinated and unsynchronized hosts, in the presence

109

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
ta

rg
e

ts

Accuracy (miles)

Octant
Octant-no-height
Octant-no-weight

Octant-no-exponential-weight
Octant-no-intermediate-nodes

Figure 4.12: The contributions of individual optimizations used in Octant
to geolocalization accuracy. The use of intermediate nodes
provides the largest improvement to system accuracy.

of routing anomalies and non-great circle routes. As a point of comparison,

if all hosts on the Internet were connected via point-to-point fiber links that

followed great-circle paths, host clocks were synchronized, and there were no

routing anomalies, achieving such error bounds using packet timings would

require timing accuracy that could accurately distinguish a delay of 22∗1.6/(2/3∗

300000) = 170 microseconds.

In a typical deployment, the number of landmarks used to localize a target

is often constrained by physical availability, and an implementation may not be

able to use all landmarks in the localization of all targets due to load limits, node

failures, or other network management constraints. We evaluate Octant’s per-

formance as a function of the number of landmarks used to localize targets, and

compare to GeoLim, the only other region-based geolocalization system. Fig-

ure 4.9 shows the number of nodes that were located successfully; that is, their

physical locations were inside the estimated location region returned by Octant.

110

Three findings emerge from the plot. First, the percentage of nodes that are suc-

cessfully localized is quite high for Octant, averaging more than 90% when the

number of landmarks exceeds 15. Second, the accuracy of the Octant approach

remains flat or improves slightly with increasing numbers of landmarks. Us-

ing 15 landmarks yields results that are almost as good as using all 50, and

adding more landmarks does not hurt performance. Finally, the accuracy of the

GeoLim approach is high for low numbers of landmarks, and drops as more

landmarks are introduced. This surprising behavior is due to overaggressive

extraction of constraints in GeoLim; as the number of landmarks increases, the

chances that a “bad” node, whose network connection yields an unexpected de-

lay, will introduce an over-constraint grows. When there are too many conflict-

ing constraints, GeoLim yields the empty set as its location estimate, whereas

the weighted combination of constraints enables Octant to avoid these pitfalls.

With all 50 landmarks, GeoLim returns the empty set for more than 29% of the

targets.

The preceding evaluation, which examined the percentage of nodes whose

physical locations lie inside their estimated location region, needs to be coupled

with an examination of the size of the estimated location regions to put the ac-

curacy of the systems in context. Figure 4.10 shows the area of the estimated

location region for GeoLim and Octant. The size of the geolocalization region

is quite small for Octant at 10 landmarks, and remains the same or slowly de-

creases with additional landmarks. For small numbers of landmarks, GeoLim

returns substantially larger areas that are a factor of 6 bigger than Octant’s,

which explains its ability to localize about 80% of the nodes with 10 landmarks.

Adding more landmarks refines GeoLim’s location estimates, though even at 50

landmarks, GeoLim’s location estimates are twice the size of Octant’s. Octant is

111

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

GeoLimNo inter.No weightsNo heightNo exp. weightsFull

P
e

rc
e

n
ta

g
e

 o
f

ta
rg

e
ts

 i
n

 l
o

c
a

ti
o

n
 e

s
ti
m

a
te

Figure 4.13: The percentage of targets located on average within their esti-
mated location areas for Octant, Octant without various opti-
mizations, and GeoLim.

able to keep the region small via its careful extraction of constraints and use of

negative information.

We next examine the absolute error in legacy position estimates based on a

single point. Figure 4.11 plots the average distance between a target’s physi-

cal location and the single point estimate returned for that target. Octant con-

sistently achieves high accuracy, even with landmarks as few as 15. In con-

trast, GeoLim and GeoPing exhibit performance that degrades as the number of

landmarks decreases and their distribution throughout the space becomes more

sparse. Octant’s performance as the number of landmarks decreases mostly

stems from its ability to use routers inside the network as secondary landmarks.

Octant’s average error is significantly less than both GeoPing and GeoLim even

when Octant uses a fifth of the landmarks as the other schemes.

To provide insight into Octant’s accuracy, we examine its performance as we

112

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

GeoLimNo Geo.OceanCity

A
re

a
 o

f
lo

c
a

ti
o

n
 e

s
ti
m

a
te

 (
m

ile
s
^2

)

Figure 4.14: The area of the location estimate for Octant with demographic
and geographic constraints. The use of these exogenous con-
straints substantially reduce the size of the estimated area.

disable various optimizations. We examine the individual contribution of each

of our optimizations, namely heights, weights, exponential weights and inter-

mediate nodes, by turning off each one in turn and comparing their accuracy

with that of the complete Octant system. Figure 4.12 shows the resulting CDFs.

The largest improvement to system accuracy is due to the use of intermediate

nodes, which significantly increases the number of usable landmarks in the sys-

tem. Undns is useful approximately half the time, but transitive localization is

critical to precise localization.

Figures 4.13 and 4.14 provide further insight into the impact of various opti-

mizations on Octant’s accuracy and precision. Figure 4.13 plots the percentage

of nodes localized with each of the optimizations turned off. NoInter refers

to Octant with localization through secondary landmarks inside the network

turned off, NoWeights uses no weights associated with constraints, NoHeight

disables the last hop delay approximation, NoExpWeights uses weights but all

113

constraints carry equal weights. The distinction between NoWeights and NoEx-

pWeights is subtle but important. In NoWeights, the estimated location of the

target is the intersection of all available constraints. In contrast, NoExpWeights

estimates the location of the target as the union of all regions above a certain

weight threshold. The effects of a limited number of incorrect constraints can

be mitigated by trading off precision, as chosen by the threshold value. The

largest contribution in improving accuracy, approximately 33%, stems from the

use of weights. GeoLim is less accurate than all the different Octant configura-

tions, even though its location estimates are significantly larger.

The use of geographical constraints in Octant significantly reduces the size

of the location estimates. Figure 4.14 shows the size of the location estimates in

square miles for Octant with the population density (“cities”) constraint which

introduces clipping areas into location estimates weighted by the density of the

population inside that region, with the oceans constraint which clips oceans

from the solution space, and without any geographic constraints, as well as the

location estimate area for GeoLim. The use of either geographical constraint

alone makes a significant improvement in the location estimate, improving the

precision of the estimates. Combined, these geographical estimates greatly im-

prove the fidelity of the location estimates returned by Octant.

The results from our public traceroute servers dataset which includes a mix-

ture of smaller commercial organizations and academic institutions are very

similar to those from our PlanetLab dataset. Figure 4.15 shows the CDF of the

distance between the position estimate and the physical location of a node. Oc-

tant again outperforms the other three techniques across the entire set of targets,

with a median localization error of 25 miles, compared to 56 miles for GeoLim,

114

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
ta

rg
e

ts

Accuracy (miles)

Octant
GeoLim

GeoPing
GeoTrack

Figure 4.15: The accuracy of different localization techniques on the public
traceroute servers dataset show very similar results to those
from the PlanetLab dataset, with Octant yielding point esti-
mates that are significant closer to the real positions of the
targets.

155 miles for GeoPing and 50 miles for GeoTrack. The significant decrease in

accuracy for GeoPing is likely due to the reduction of landmarks from 51 in the

PlanetLab dataset to 32 in the traceroute servers dataset, as GeoPing is the most

sensitive technique to the number of available landmarks.

These results show that Octant achieves high accuracy in its point estimate

for a target, high probability that its location estimate will contain the target,

and high precision as indicated by the size of its location estimate area. Overall,

Octant can locate the median node to a point within 22 miles of its physical po-

sition, or to a tight area (factor of two smaller than previous work) that contains

the physical location with 90% probability. Octant requires very few landmarks

to be effective; as few as 20 landmarks can achieve approximately the same ac-

curacy as from using all 50 landmarks.

115

4.4 Summary

Determining the geographic location of Internet hosts is a useful basic building

block. Since nodes are identified by IP addresses that are assigned to facili-

ate efficient routing rather than expose the physical location of nodes, we must

instead rely on techniques that can extract location information from network

measurements. Octant is a general, comprehensive framework for representing

network locations for nodes, extracting constraints on where nodes may or may

not be located, and combining these constraints to compute small location es-

timates that bound the possible location of target nodes with high probability.

Octant represents node position and regions precisely using Bézier-bounded re-

gions that can admit any kind of constraint, makes use of both positive and

negative information to aggressively reduce the estimated region size, and can

effectively reason in the presence of uncertainty and erroneous constraints. It

utilizes a number of techniques to extract fine-grain information from end-to-

end latency measurements on the Internet. Octant enables network operators to

determine, with high confidence, the position of nodes given latency measure-

ments, which in turn enables new location-aware services.

116

CHAPTER 5

RELATED WORK

The node and object discovery problems addressed in this thesis, namely,

network location-aware node selection, decentralized approximate keyword

matching, and geolocalization of Internet hosts, are common to many real-

world applications and services. As a result, there has been significant past

efforts at addressing these problems. In this chapter, I describe these efforts and

briefly summarize how they differ from the systems described in this thesis.

5.1 Network Location-Aware Node Selection

Past work on network location services can be separated into approaches that

rely on network embeddings and those that do not. I survey both in turn in the

next sections.

5.1.1 Network Embedding

Recent work on network coordinates can be categorized roughly into landmark-

based systems and simulation-based systems. Both types can embed nodes into

a Euclidean coordinate space. Such an embedding allows the distance between

any two nodes to be determined without direct measurement.

GNP [69] determines the coordinates of a node by measuring its latency to

a fixed set of landmarks and then solving a multidimensional, iterative, non-

linear minimization problem. ICS [56] and Virtual Landmarks [93] both aim to

reduce the computational cost of the GNP embedding algorithm by replacing it

117

with a computationally cheaper, linear approximation based on principal com-

ponent analysis, though the speedup may incur a loss in accuracy. IDES [61]

and Phoenix[22] compute coordinates by performing matrix factorization, such

as singular value decomposition, of the latency matrix in place of performing a

Euclidean embedding. This method can represent non-symmetric routes and la-

tencies that violate triangle inequality but nevertheless achieves similar predic-

tion accuracies as embedding-based systems. Sequoia [74] embed both latency

and bandwidth as trees rather than an Euclidean space, and achieves similar

latency prediction accuracy as Euclidean embedding-based systems.

To avoid the load imbalance and lack of failure resilience created by using a

set of fixed landmarks, PIC [24] and PCoord [55] use landmarks only for boot-

strapping and calculate their coordinates based on the coordinates of peers. This

can lead to compounding of embedding errors over time in a system with churn.

NPS [70] is similar to PIC and PCoord but further imposes a hierarchy on nodes

to avoid cyclic dependencies in computing coordinates and to ensure conver-

gence. Lighthouse [73] avoids fixed landmarks entirely and uses multiple local

coordinate systems that are joined together through a transition matrix to form

a global coordinate system.

Simulation-based systems map nodes and latencies into a physical system

whose minimum energy state determines the node coordinates. Vivaldi [25]

is based on a simulation of springs, and can be augmented with an additional

height vector to increase accuracy. Big-Bang Simulation [86] performs a simula-

tion of a particle explosion under a force field to determine node positions.

IDMaps [34] is a system that can compute the approximate distance between

two IP addresses without direct measurement based on strategically placed

118

tracer nodes. IDMaps incurs inherent errors based on the client’s distance to its

closest tracer server and requires deploying system wide infrastructure. Other

work [33] has also examined how to delegate probing to specialized nodes in

the network.

iPlane [57] and iPlane Nano [58] take a structural approach to latency pre-

diction. Extensive traceroutes and latency measurements are combined to con-

struct a partial atlas of the Internet. Segments of measured paths are combined

to predict the route between arbitrary hosts. The accuracy of route prediction

therefore hinges on having sufficient a priori measurements and these systems

can have significant prediction errors in regions that are underrepresented in

their respective atlases.

Beverly et al. proposed a machine learning approach to latency predic-

tion [13] by using SVMs to learn the basis of the Internet address space. This

system relies on centralize computation on a significant amount of training data,

and generally provides prediction accuracies that are worse than embedding-

based systems.

Recent theoretical work [51, 88] has sought to explain the empirical success

of network embeddings and IDMaps-style approaches. The theoretical founda-

tions for the Meridian framework are presented in detail in an extended techni-

cal report [102].

119

5.1.2 Server Selection

Meridian’s closest node discovery protocol draws its inspiration from the Chord

DHT [91], which performs routing in a virtual identifier space by halving the

virtual distance to the target at each step. Proximity based neighbor selec-

tion [19, 20] populates DHT routing tables with nearby nodes, which decreases

lookup latency, but does not directly address location-related queries. The time

and space complexity of two techniques are discussed in [43] and [46], but these

techniques focus exclusively on finding the nearest neighbor, apply only to

Internet latencies modeled by growth-constrained metrics, and have not been

evaluated with a large scale Internet data.

In beaconing [52], landmark nodes keep track of their latency to all other

nodes in the system. A node finds the closest node by querying all landmarks

for nodes that are roughly the same distance away from the landmarks. This ap-

proach requires each landmark to retain O(N) state, and can only resolve nearest

neighbor queries. Binning [77] operates similarly, using approximate bin num-

bers instead of direct latency measurements. Mithos [97] provides a gradient

descent based search protocol to find proximate neighbors in its overlay con-

struction. It is similar to Meridian as it is iterative and performs active probing

but it requires O(N) hops to terminate. It is also more prone to terminate prema-

turely at a local minimum than Meridian as it does not promote diversity in its

neighbor set. Various active-probing based nearest neighbor selection schemes

are proposed in [85]. These schemes require O(N) state per node, which lim-

its their scalability, and are non-trivial to adapt to other positioning problems.

Tiers [9] reduces the state requirement by forming a proximity-aware tree and

performing a top-down search to discover the closest node. Hierarchical sys-

120

tems suffer inherently from load imbalance as nodes close to the root of the

hierarchy service more queries, which limits scalability when the workload in-

creases with system size.

Early work on locating nearby copies of replicated services [41] examined

combining traceroutes and hop counts to perform a rough triangulation, and to

determine the closest replica at a centralized O(N) server using Hotz’s distance

metric [44]. Dynamic server selection was found in [16] to be more effective

than static server selection due to the variability of route latency over time and

the large divergence between hop count and latency. Simulations [17] using a

simple dynamic server selection policy, where all replica servers are probed and

the server with the lowest average latency is selected, show the positive sys-

tem wide effects of latency-based server selection. Our closest node discovery

application can be used to perform such a selection in large-scale networks.

More recently, following my work on ClosestNode.com [100], OASIS [35]

provides an alternative DNS to Meridian gateway implementation that explores

techniques that trade off localization accuracy for a reduction in on-demand

probing. In contrast to ClosestNode.com where nodes in each domain form

independent Meridian overlays, OASIS constructs a single Meridian overlay

spanning across every domain. It associates each client with the geographic co-

ordinates of the client’s closest node in the domain agnostic overlay using the

Meridian closest node discovery protocol and caches this association. OASIS

answers domain specific queries by using a global lookup table to find the clos-

est node from the requested domain to the client, as a measure of the great cir-

cle distance of their associated coordinates. Clients that query multiple OASIS

managed domains within a short time-span can take advantage of the caching

121

to limit on-demand probing to the initial query. However, accuracy suffers as

coordinates, with their associated embedding errors, are re-introduced in the

node selection process.

5.2 Decentralized Approximate Keyword Matching

The problem of performing decentralized approximate keyword matching can

be separated into two primary components: routing in overlay networks and

approximate matching techniques. I survey past work on both components in

turn in the next sections.

5.2.1 Routing in overlay networks

Cubit is a loosely structured overlay network that most closely resemble a dis-

tributed hash table. It differs from previous DHTs [78, 91, 106, 76, 62, 45] by

providing a novel match primitive rather than supporting only precise lookups.

Query routing in Cubit is similar to routing in CAN [76] and SWAM [8].

CAN is a coordinate-based approach in which each node knows its immediate

closest neighbor in each of the dimensions and greedily routes to the destina-

tion. CAN works best when the embedded node set resembles a grid or a torus;

it is not designed to work on highly non-homogeneous point sets such as the

(embedded) keyword space. Border cases in dealing with churn makes CAN

difficult to implement and deploy in practice. SWAM [8] is similar to CAN but

partitions the coordinate space into a Voronoi diagram instead of a regular grid.

122

While the Cubit framework builds on top of Meridian [101], the two sys-

tems differ inherently and significantly in the problems they address, the way

they perform routing, and the kinds of optimizations they employ. The Cubit

framework is more general in that it supports complex boolean search queries

and distance metrics beyond network latencies. Cubit queries are also more

complex because they require finding the set of all nodes that meet a particular

constraint, and because Cubit nodes constitute a key/value database instead of

the more constrained node/latency space; necessitating significantly different

node join and query routing protocols. Cubit also introduces optimizations not

applicable to the Meridian context, such as mechanisms to proactively maintain

object replication for improved resiliency in a highly dynamic peer-to-peer envi-

ronment, and to encapsulate and offload keyword regions to nearby neighbors.

Several peer-to-peer systems, e.g. [91, 60, 59], use overlay routing based on

small world networks. These systems use a specific virtual space (e.g. a ring) in

which long links are introduced such that a simple greedy routing protocol can

find short routes. These systems are inherently limited to precise lookups.

5.2.2 Approximate matching

Prior to Cubit, I proposed an alternate design [103] for performing approximate

matching that involves representing keywords as points in an Euclidean space.

Once nodes and keywords are embedded, techniques such as CAN [76] and

Meridian [101] can be used for navigation in that space. While this approach

gives a clean and intuitively appealing representation of the keyword space, the

literature on metric embeddings does not provide embeddings of edit distances

123

into Euclidean space that are known to have a sufficiently high precision for

the approximate matching of short keywords. The embedding is prohibitively

inaccurate in practice, distorting the navigation.

Past work has proposed to use the Soundex algorithm to encode keywords

by their phonemes before indexing them in a DHT [105]. Unlike edit distance,

Soundex is appropriate only for English keywords and is not effective against

typing errors.

In DPMS [5], document keywords and search queries are broken up into

fixed size substrings. A query match is found if its substrings are a subset of the

document’s substrings. This matching primitive only accommodates substring

matches and does not find near-matches for queries that are misspelled.

Squid [83] creates a multi-dimensional space using a fixed number of key-

words as axes. Each object is represented by a set of keywords, and its posi-

tion in the multi-dimensional space is based on the prefix match distance be-

tween the keywords and the axes. The multi-dimensional space is flattened

using space filling curves into a one dimensional space, allowing storage and

search to be performed on a DHT. This scheme is primarily targeted at range

queries on search terms that are small variations of the axes keywords, rather

than for arbitrary search terms.

A number of systems make use of coding techniques to provide approximate

search. In P2P-AS [65], an error correcting code is introduced that maps small

variations of a keyword into the same hash bin. However, the cost of scaling the

number of correctable errors is prohibitive. Search terms with more than 3-bits

of error require performing additional searches using misspelled variations of

124

the search terms. Another coding based system is LSH Forest [12], which uses

locality-sensitive hashing [37] to cluster similar terms. The system is primarily

focused on finding similar documents rather than keywords.

pSearch [92] uses latent semantic indexing on documents to generate vectors

that represent its relative similarity to other documents in the system. CAN [76]

is used to traverse this vector space. The focus of pSearch is on finding docu-

ments with high semantic relevance to the search keys. It is however unable to

match misspelled search keys to documents with correctly spelled keywords, as

the search keys and keywords may be typographically similar but are semanti-

cally unrelated. The computational overhead in using latent semantic indexing

is significantly more than edit-distance computations, and the high dimension-

ality vector spaces created by latent semantic indexing requires a large amount

of state to be maintained per CAN node.

5.3 Geolocalization of Internet Hosts

Past work on geolocalization can be broken down into approaches that deter-

mine a single point estimate for a target, and those that, like Octant, provide a

region encompassing the set of points where the target may lie. With increasing

reliance on geolocalization in commerical systems, there have also been signifi-

cant efforts in identifying the security properties of these approaches.

125

5.3.1 Single-Point Localization

IP2Geo [71] proposes three different techniques for geolocalization, called

GeoPing, GeoTrack and GeoCluster. GeoPing maps the target node to the land-

mark node that exhibits the closest latency characteristics, based on a metric

for similarity of network signatures [7]. The granularity of GeoPing’s geolo-

calization depends on the number and location of the landmarks, requiring a

landmark to be close to each target to produce low-error geolocation.

GeoTrack performs a traceroute to a given target, extracts geographical in-

formation from the DNS names of routers on the path, and localizes the node to

the last router on the path whose position is known. The accuracy of GeoTrack

is thus highly dependent on the distance between last recognizable router to the

landmark, as well as the accuracy of the positions extracted from router names.

GeoCluster is a database based technique that first breaks the IP address

space into clusters that are likely to be geographically co-located, and then

assigns a geographical location to each cluster based on IP-to-location map-

pings from third party databases. These databases include the user registration

records from a large web-based e-mail service, a business web-hosting company,

as well as the zip-codes of users of an online TV program guide. This technique

requires a large, fine-grain and fresh database. Such databases are not readily

available to the public due to potential privacy concerns, the clustering may not

sufficiently capture locality, the accuracy of such databases must be perpetu-

ally refreshed, and, most importantly, the overall scheme is at the mercy of the

geographic clustering performed by ISPs when assigning IP address ranges.

Wang et al. [98] proposed a geolocation system that utilizes nodes from

126

popular online map services that self-report their locations as additional land-

marks. Targets are geolocalized to the location of their nearest nodes in the map

databases. Much like GeoCluster, this approach relies on having access to a

large source of potentially erroneous ground truth data. The accuracy of the

system largely depends on the size of the pool of nodes in the map databases

that are proximate to the target.

Youn et al. [104] proposed a statistical approach that applies kernel density

estimation to delay measurements. The estimated node location is the maxi-

mum likelihood position. This statistical approach can be incorporated into the

Octant framework and provide a potentially tighter latency-to-distance map-

ping than the convex hull approach.

Services such as NetGeo [64] and IP2LL [1] geolocalize an IP address using

the locations recorded in the WHOIS database for the corresponding IP address

block. The granularity of such a scheme is very coarse for large IP address

blocks that may contain geographically diverse nodes. The information in the

WHOIS database is also not closely regulated and the address information of-

ten indicates the location of the head office of the owner which need not be

geographically close to the actual target. Quova [3] is a commercial service that

provides IP geolocalization based on its own proprietary technique. Neither the

details of the technique nor a sample dataset are publicly available.

There are several graphical traceroute tools that offer the geographical lo-

cation of each intermediate router. GTrace [72] successively uses DNS LOC

entries, a proprietary database of domain name to geographical location map-

pings, NetGeo, and domain name country codes, as available, to localize a given

node. VisualRoute [4] is a commercial traceroute tools that also offer geographic

127

localization of the nodes along the path.

5.3.2 Region Localization

GeoLim [38] derives the estimated position of a node by measuring the network

latency to the target from a set of landmarks, extracts upper bounds on position

based on inter-landmark distance to latency ratios, and locates the node in the

region formed by the intersection of these fixes to established landmarks. Since

it does not use negative information, permit non-convex regions or handle un-

certainty, this approach breaks down as inter-landmark distances increase.

In contrast, Octant provides a general framework for combining both posi-

tive and negative constraints to yield a small, bounded region in which a node

is located. It differs from past work in that it enables negative information to be

used for localization, separates the selection of a representative point estimate

from the computation of the feasible set of points in which a node might be lo-

cated, permits non-convex solution areas, and aggressively harvests constraints

from network latency measurements.

Topology-based Geolocation (TBG) [47] uses the maximum transmission

speed of packets in fiber to conservatively determine the convex region where

the target lies from network latencies between the landmarks and the target.

It additionally uses inter-router latencies on the landmarks to target network

paths to find a physical placement of the routers and target that minimizes in-

consistencies with the network latencies. TBG relies on a global optimization

that minimizes average position error for the routers and target. This process

can introduce error in the target position in an effort to reduce errors on the

128

location of the intermediate routers. Octant differs from TBG by providing

a geometric solution technique rather than one based on global optimization.

This enables Octant to perform geolocalization in near real-time, where TBG

requires significantly more computational time and resources. A geometric so-

lution technique also allows Octant to seamlessly incorporate exogenous geo-

metric constraints stemming from, for example, geography and demographics.

This provides Octant with more sources of information for its geolocalization

compared to TBG.

A machine-learning based approach, proposed by Eriksson et al. [31], em-

ploys a naive Bayesian framework to classify nodes to geographic regions based

on prior measurements to these nodes. This approach can robustly combine

different measurement sources, but at the cost of reduced fidelity in the geolo-

calization result. It exhibits lower accuracy than competing approaches using

similar sources of measurement data.

Localization has been studied extensively in wireless systems. The wire-

less localization problem, however, is significantly different from, and easier

than, localization on the Internet, as air is close to a perfect medium with well-

understood transmission characteristics. The most comprehensive work on lo-

calization in wireless networks is Sextant [39]. We share with Sextant the basic

insight for accommodating both positive and negative constraints and enabling

constraints to be used by landmarks whose positions are not known defini-

tively. Octant differs substantially from Sextant in the various mechanisms it

uses to translate Internet measurements to constraints, including its mapping of

latencies to constraints, isolating last hop delays, and compensating for indirect

routes, among others.

129

5.3.3 Geolocalization Security

Most geolocalization techniques, including Octant, rely on extracting geo-

graphic information from data-sources that can not be entirely trusted. Network

measurements to nodes can be altered, and network topological information can

be falsified given a sufficiently resourceful attacker.

Muir et al. [66] presents several techniques for adversaries to evade geolocal-

ization systems that rely primarily on registration databases. These techniques

include hiding behind proxy servers and altering HTTP headers on requests

and responses.

Gill et al. [36] investigates the effectiveness of falsifying network mea-

surements to mislead measurement-based geolocalization systems. The work

presents the tradeoffs between the severity and the detectability of different at-

tacks from adversaries of varying resourcefulness. The adversaries span end-

users who are limited to increasing network latencies to corporations that can

present altered views of the network to the geolocalization systems.

130

CHAPTER 6

FUTURE DIRECTIONS AND SUMMARY

A number of research directions follow from the work described in this the-

sis. They span using the space-based approach to address problems in emerging

areas, such as cloud-computing, to extending the problems addressed in this

thesis to encompass much broader requirements, such as geolocalization at a

planet-wide scale. The following sections describe some exemplary directions

where the approach advocated in this thesis can potentially yield significant

improvements over past work.

Searchable Cloud-based Storage

The emergence of cloud-computing changes a number of assumptions regard-

ing the requirements of operating a large-scale distributed system. A significant

body of work has focused on providing scalable, large-scale, cloud-based stor-

age. Current deployed cloud-storage systems, such as BigTable [21] and Cas-

sandra [53], offer a simple key-value storage interface that trades off reduced

query complexity for improved scalability and performance. Applications that

use these systems must currently work around this limited interface, often re-

sulting in non-intuitive and inconsistent organization of the application data.

The space-based approach can be applied to design a distributed storage

system that can support complex search queries while offering similar perfor-

mance to key-value storage systems. Rather than representing structured data,

containing values for multiple attributes, as rows in flat, two-dimensional ta-

bles, data can instead be mapped to a position in a multi-dimensional space

131

where the data attributes serve as the dimensional axes. Complex search queries

that specify values on multiple attributes map to search hyperplanes, represent-

ing the search regions. These search hyperplanes significantly prune the search

space. With proper layout of nodes in the space, only a limited number of nodes

need to be queried for each search query. I have designed and implemented Hy-

perDex based on the above design, which is the first project in a line of research

that aims to explore the fundamental tradeoffs between capabilities and perfor-

mance in large-scale, cloud-storage systems.

Passive and Scalable Geolocalization

The geolocalization problem offers additional challenges beyond those tackled

by this thesis. In certain contexts, it may be undesirable to perform active mea-

surements on the geolocalization target, as targets that are aware of geolocaliza-

tion attempts can try to mask their locations or vary the latency of measurement

probes to mislead geolocalization systems [36]. In other contexts, there may be

a large number of targets to geolocalize at once, requiring a scalable geolocal-

ization approach.

The Octant framework described in this thesis provides a principled foun-

dation for meeting these challenges. It is straightforward to adopt the Octant

framework to use passive measurements in lieu of active measurement probes.

Passive measurements eliminate the measurement delays introduced by active

measurement probes, and provide the additional benefit of ensuring the targets

are oblivious of the geolocalization attempts.

For contexts that require extreme scalability, the Octant framework can be re-

132

structured into a multi-stage Map/Reduce process that can distribute the highly

parallelizable computational workload across the nodes in a datacenter. Further

scalability improvements can come from aggregating latency measurements

into a large topological map that significantly reduces the input size without

any loss of accuracy or precision.

Summary of Thesis

Node and object discovery problems are pervasive in large-scale distributed

systems, affecting performance, scalability and correctness if they are not ad-

equately addressed. Past work introduced many different ad-hoc techniques

for addressing each specialized discovery problem. In this thesis, I introduced

a unifying, space-based approach that is effective at addressing a diverse set of

node and discovery problems and significantly improves upon the performance

and accuracy of past solutions.

The crux of the space-based approach is to model and solve distributed prob-

lems geometrically. The challenge in applying this approach lies in finding an

appropriate space to represent the problem and designing efficient distributed

data-structures and algorithms for traversing this space. The solution regions,

representing the collection of locations that represent solutions to the problem,

are often immediately apparent once appropriate spaces are found. An impor-

tant design decision in my systems is to create spaces that utilize the problems’

measure of success, namely network latency, keyword edit-distance, and ge-

ographic distance, as the distance metric. This design, in contrast to designs

based on embedding, forgo introducing additional structures that can aid in

133

traversal of the spaces but create distortions or artifacts that can affect the accu-

racy of the solutions. For the problems I explored in this thesis, I demonstrated

that the structure introduced by embedding systems is neither necessary nor de-

sirable; the respective solution spaces can be efficiently traversed directly, and

avoiding an embedding yields substantial improvements in accuracy.

I tackled three node and object discovery problems in this thesis to illus-

trate the flexibility of the space-based approach. The problems are latency-

aware node selection, decentralized approximate keyword matching, and ge-

olocalization of Internet hosts. These problems are the key challenges to pro-

viding efficient content-distribution, fully decentralized file-sharing networks,

and context-aware advertisement delivery. Using the space-based approach to

solve these problems paid significant dividends; it provided a framework for

computing solutions precisely and efficiently, and enabled techniques and opti-

mizations to be shared across the different solutions. The three systems I built

for solving these problems provided significant improvements to both perfor-

mance and accuracy over past work. Of equal importance, these systems have

also served as vehicles for many other research projects, both past and on-going,

and I hope they will continue to play a role in shaping future distributed system

designs.

134

APPENDIX A

K-CLOSEST NODE DISCOVERY IN MQL

1 Measurement[] sort_measure(int k, Measurement r_lat[]) {

2 double d_lat[];

3 for (int i = 0; i < array_size(r_lat); i = i + 1) {

4 push_back(d_lat, r_lat[i].distance[0]);

5 }

6 Measurement ret_list[];

7 while (array_size(ret_list) < k && array_size(d_lat) > 0) {

8 int offset = array_min_offset(d_lat);

9 push_back(ret_list, r_lat[offset]);

10 d_lat[offset] = d_lat[array_size(d_lat)-1];

11 r_lat[offset] = r_lat[array_size(r_lat)-1];

12 pop_back(d_lat);

13 pop_back(r_lat);

14 }

15 return ret_list;

16 }

17

18 Measurement[] local_closest(int k, double beta, Node t) {

19 int ping_TO = 1000;

20 Node ts[] = {t};

21 Measurement self = get_distance_icmp(ts, ping_TO);

22 double self_lat = self.distance[0];

23 if (self_lat > dbl(ping_TO)) {

24 Measurement empty[];

25 return empty;

26 }

27 Node ring_m[] = array_intersect(

28 ring_ge((1.0 - beta) * self_lat), ring_le((1.0 + beta) * self_lat));

29 if (array_size(ring_m) == 0) {

30 Measurement ret_list[]= {self};

31 return ret_list;

32 }

33 int timeout = ceil(2.0 * (1.0 + beta) * self_lat);

34 Measurement r_lat[] = get_distance_icmp(ring_m, ts, timeout);

35 push_back(r_lat, self);

36 r_lat = sort_measure(k, r_lat);

37 Measurement r_ret[];

38 for (int i = 0; i < array_size(r_lat); i = i + 1) {

39 if (r_lat[i].distance[0] > dbl(timeout)) {

40 break;

41 }

42 push_back(r_ret, r_lat[i]);

43 }

44 return r_ret;

45 }

46

47 int is_in_list(Node c_list[], Node n_node) {

48 for (int i = 0; i < array_size(c_list); i = i + 1) {

49 if (c_list[i].addr == n_node.addr &&

50 c_list[i].port == n_node.port) {

51 return 1;

135

52 }

53 }

54 return 0;

55 }

56

57 Node[] filter_list(Node n_list[], Measurement f_list[]) {

58 Node r_list[];

59 for (int i = 0; i < array_size(n_list); i = i + 1) {

60 Node c_node = n_list[i];

61 for (int j = 0; j < array_size(f_list); j = j + 1) {

62 Measurement m = f_list[j];

63 if (c_node.addr == m.addr && c_node.port == m.port) {

64 push_back(r_list, c_node);

65 break;

66 }

67 }

68 }

69 return r_list;

70 }

71

72 Node[] measure_to_list(Measurement f_list[]) {

73 Node r_list[];

74 for (int i = 0; i < array_size(f_list); i = i + 1) {

75 Measurement r = f_list[i];

76 Node n = {r.addr, r.port, 0, 0};

77 push_back(r_list, n);

78 }

79 return r_list;

80 }

81

82 Measurement[] get_closest(Node t, int k) {

83 Node c_list[];

84 Measurement f_list[] = local_closest(k, 0.5, t);

85 Measurement s_list[];

86 for (int i = 0; i < array_size(f_list); i = i + 1) {

87 if (f_list[i].addr == 0) { // Check if it is the local node

88 push_back(s_list, f_list[i]);

89 f_list[i] = f_list[array_size(f_list)-1];

90 pop_back(f_list);

91 f_list = sort_measure(k, f_list);

92 break;

93 }

94 }

95 Node n_list[] = measure_to_list(f_list);

96 while (array_size(n_list) > 0) {

97 Node e = n_list[array_size(n_list)-1];

98 pop_back(n_list);

99 Measurement r_list[] = rpc(e, local_closest, k, 0.5, t);

100 push_back(c_list, e);

101 for (int i = 0; i < array_size(r_list); i = i + 1) {

102 Measurement r = r_list[i];

103 if (r.addr == 0) {

104 r.addr = e.addr; r.port = e.port;

105 }

106 Node n_node = {r.addr, r.port, 0, 0};

136

107 if (is_in_list(c_list, n_node) == 1) {

108 continue;

109 }

110 if (is_in_list(n_list, n_node) == 0) {

111 f_list = sort_measure(k, f_list);

112 if (array_size(f_list) < k) {

113 push_back(f_list, r);

114 push_back(n_list, n_node);

115 } else if (r.distance[0] < f_list[k-1].distance[0]) {

116 push_back(f_list, r);

117 push_back(n_list, n_node);

118 }

119 }

120 }

121 f_list = sort_measure(k, f_list);

122 n_list = filter_list(n_list, f_list);

123 }

124 if (array_size(f_list) == 0) {

125 return s_list;

126 }

127 return f_list;

128 }

137

BIBLIOGRAPHY

[1] IP to Latitude/Longitude Server, University of Illinois.
http://cello.cs.uiuc.edu/cgi-bin/slamm/ip2ll.

[2] IP2Location. http://www.ip2location.com.

[3] Quova. http://www.quova.com.

[4] Visualware Inc. http://www.visualroute.com.

[5] R. Ahmed and R. Boutaba. Distributed pattern matching: A key to flexible
and efficient p2p search. IEEE Journal on Selected Areas in Communications,
25(1), 2007.

[6] D. Assaf. The Sensitivity of Spline Functions on Triangulations to Vertex Per-
turbation. PhD thesis, Vanderbilt University, May 1998.

[7] P. Bahl and V. Padmanabhan. RADAR: An In-Building RF-Based User
Location and Tracking System. In INFOCOM, Tel Aviv, Israel, March 2000.

[8] F. Banaei-Kashani and C. Shahabi. Swam: A family of access methods for
similarity-search in peer-to-peer data networks. In CIKM, 2004.

[9] S. Banerjee, C. Kommareddy, and B. Bhattacharjee. Scalable Peer Finding
on the Internet. In Global Internet Symposium, Taipei, Taiwan, November
2002.

[10] C. Barber, D. Dobkin, and H. Huhdanpaa. The Quickhull Algorithm for
Convex Hulls. Transactions on Mathematical Software, 22(4), 1996.

[11] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson,
T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating System Support
for Planetary-Scale Network Services. In Networked Systems Design and
Implementation, San Francisco, CA, March 2004.

[12] M. Bawa, T. Condie, and P. Ganesan. Lsh forest: Self-tuning indexes for
similarity search. In WWW, Japan, 2005.

[13] R. Beverly, K. Sollins, and A. Berger. SVM Learning of IP Address Struc-
ture for Latency Prediction. In MineNet, Pisa, Italy, 2006.

138

[14] BitTorrent.com. Advanced bittorrent, 2010.
http://www.bittorrent.com/btusers/guides/bittorrent-
user-manual/appendix-bittorrentmainline-interface/-
preferences/advanced#dht.rate.

[15] J. Cao, D. Davis, S. Wiel, and B. Yu. Time-varying Network Tomography.
American Statistical Association, 95, 2000.

[16] R. Carter and M. Crovella. Server Selection Using Dynamic Path Char-
acterization in Wide-Area Networks. In INFOCOM, Kobe, Japan, April
1997.

[17] R. Carter and M. Crovella. On the Network Impact of Dynamic Server
Selection. Computer Networks, 31, 1999.

[18] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Secure
routing for structured peer-to-peer overlay networks. In OSDI, MA, 2002.

[19] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Exploiting Network Prox-
imity in Peer-to-Peer Overlay Networks. In Technical Report MSR-TR-2003-
82, Microsoft Research, 2002.

[20] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Proximity Neighbor Se-
lection in Tree-Based Structured Peer-to-Peer Overlays. In Technical Report
MSR-TR-2003-52, Microsoft Research, 2003.

[21] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage
system for structured data. In Operating Systems Design and Implementa-
tion, 2006.

[22] Y. Chen, X. Wang, X. Song, E. Lua, C. Shi, X. Zhao, B. Deng, and X. Li.
Phoenix: Towards an Accurate, Practical and Decentralized Network Co-
ordinate System.

[23] CiteSeer.IST. Citeseer publications researchindex, 2008.
http://citeseer.ist.psu.edu/.

[24] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical Internet Co-
ordinates for Distance Estimation. In Intl. Conference on Distributed Com-
puting Systems, Tokyo, Japan, March 2004.

139

[25] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decentralized
Network Coordinate System. In SIGCOMM, Portland, OR, August 2004.

[26] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-Area Co-
operative Storage with CFS. In Symposium on Operating Systems Principles,
Banff, AB, Canada, October 2001.

[27] E. Damiani, D. C. d. Vimercati, S. Paraboschi, P. Samarati, and F. Violante.
A reputation-based approach for choosing reliable resources in peer-to-
peer networks. In CCS, 2002.

[28] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI, San Francisco, CA, December 2004.

[29] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Stur-
gis, D. Swinehart, and D. Terry. Epidemic Algorithms for Replicated
Database Maintenance. In Symposium on Principles of Distributed Comput-
ing, Vancouver, BC, Canada, August 1987.

[30] J. R. Douceur. The sybil attack. In IPTPS, MA, 2002.

[31] B. Eriksson, P. Barford, J. Sommers, and R. Nowak. A Learning-based
Approach for IP Geolocation. In PAM, Zurich, Switzerland, 2010.

[32] G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Prac-
tical Guide. Academic Press, 1988.

[33] Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar. A Novel Server Selec-
tion Technique for Improving the Response Time of a Replicated Service.
In INFOCOM, San Francisco, CA, March 1998.

[34] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. IDMaps:
A Global Internet Host Distance Estimation Service. Transactions on Net-
working, 9:525–540, October 2001.

[35] M. Freedman, K. Lakshminarayanan, and D. Mazieres. OASIS: Anycast
for Any Service. In NSDI, San Jose, CA, May 2006.

[36] P. Gill, Y. Ganjali, B. Wong, and D. Lie. Dude where’s that IP? Circumvent-
ing Measurement-based IP Geolocation. In USENIX Security, Washington,
DC, August 2010.

140

[37] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimen-
sions viah Hashing. In VLDB, Edinburgh, Scotland, 1999.

[38] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida. Constraint-Based Ge-
olocation of Internet Hosts. In Internet Measurement Conference, Taormina,
Sicily, Italy, October 2004.

[39] S. Guha, R. Murty, and E.G. Sirer. Sextant: A Unified Framework for
Node and Event Localization in Sensor Networks. In Mobihoc, Urbana-
Champaign, IL, May 2005.

[40] K. Gummadi, S. Saroiu, and S. Gribble. King: Estimating Latency between
Arbitrary Internet End Hosts. In Internet Measurement Workshop, Marseille,
France, November 2002.

[41] J. Guyton and M. Schwartz. Locating Nearby Copies of Replicated Inter-
net Servers. In SIGCOMM, Cambridge, MA, August 1995.

[42] A. Haeberlen, P. Kouznetsov, and P. Druschel. Peerreview: Practical ac-
countability for distributed systems. In SOSP, WA, 2007.

[43] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao. Distributed Object Lo-
cation in a Dynamic Network. In Symposium on Parallel Algorithms and
Architectures, Winnipeg, MB, Canada, August 2002.

[44] S. Hotz. Routing Information Organization to Support Scalable Interdomain
Routing with Heterogeneous Path Requirements. PhD thesis, Univ. of South-
ern California, 1994.

[45] F. Kaashoek and D. Karger. Koorde: A simple degree-optimal distributed
hash table. In IPTPS, CA, 2003.

[46] D. Karger and M. Ruhl. Finding Nearest Neighbors in Growth-restricted
Metrics. In Symposium on Theory of Computing, Montreal, QC, Canada,
May 2002.

[47] E. Katz-Bassett, J. John, A. Krishnamurthy, D. Wetherall, T. Anderson, and
Y. Chawathe. Towards IP Geolocation using Delay and Topology Mea-
surements. In Internet Measurement Conference, Rio de Janeiro, Brazil, Oc-
tober 2006.

[48] S. H. Khor, N. Christin, T. Wong, and A. Nakao. Power to the People:

141

Securing the Internet One Edge at a Time. In LSAD, Kyoto, Japan, August
2007.

[49] J. Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective.
In STOC, Portland, OR, May 2000.

[50] J. Kleinberg. Complex networks and decentralized search algorithms. In
Intl. Congress of Mathematicians, 2006.

[51] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and Embedding
Using Small Sets of Beacons. J. of the ACM, 56(6), September 2009. Prelim-
inary version has appeared in 45th IEEE FOCS, 2004.

[52] C. Kommareddy, N. Shankar, and B. Bhattacharjee. Finding Close Friends
on the Internet. In Intl. Conference on Network Protocols, Riverside, CA,
November 2001.

[53] A. Lakshman and P. Malik. Cassandra - a decentralized structured storage
system. In SOSP Workshop on Large Scale Distributed Systems and Middle-
ware, 2009.

[54] J. Ledlie, P. Gardner, and M. Seltzer. Network Coordinates in the Wild. In
NSDI, Cambridge, MA, April 2007.

[55] L. Lehman and S. Lerman. PCoord: Network Position Estimation Using
Peer-to-Peer Measurements. In Intl. Symposium on Network Computing and
Applications, Cambridge, MA, August 2004.

[56] H. Lim, J. Hou, and C. Choi. Constructing Internet Coordinate System
Based on Delay Measurement. In Internet Measurement Conference, Miami,
Florida, October 2003.

[57] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishna-
murthy, and A. Venkataramani. iplane: An information plane for dis-
tributed services. In OSDI, Seattle, WA, 2006.

[58] H. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. iPlane Nano: Path Prediction for Peer-to-Peer Appli-
cations, 2009.

[59] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic
emulation of the butterfly. In PODC, CA, 2002.

142

[60] G. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing
in a small world. In USITS, WA, 2003.

[61] Y. Mao, L. Saul, and J. Smith. IDES: An Internet Distance Estimation Ser-
vice for Large Networks. 24, 2006.

[62] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric. In IPTPS, MA, 2002.

[63] R. C. Merkle. Secure communications over insecure channels. Communi-
cations of the ACM, 1978.

[64] D. Moore, R. Periakaruppan, and J. Donohoe. Where in the World is net-
geo.caida.org? In INET2000 Poster, Yokohama, Japan, July 2000.

[65] A. Mowat, R. Schmidt, M. Schumacher, and I. Constantinescu. Extending
peer-to-peer networks for approximate search. In SAC, Brazil, 2008.

[66] J. Muir and P. Oorschot. Internet Geolocation: Evasion and Countereva-
sion. ACM Computing Survey, 42, December 2009.

[67] H. Neemuchwala and A. Hero. Image registration in high-dimensional
feature space. In Computational Imaging, CA, 2005.

[68] Netflix. Netflix prize, 2006. http://www.netflixprize.com.

[69] T. Ng and H. Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In INFOCOM, New York, NY, June 2002.

[70] T. Ng and H. Zhang. A Network Positioning System for the Internet. In
USENIX, Boston, MA, June 2004.

[71] V. Padmanabhan and L. Subramanian. An Investigation of Geographic
Mapping Techniques for Internet Hosts. In SIGCOMM, San Diego, CA,
August 2001.

[72] R. Periakaruppan and E. Nemeth. GTrace - A Graphical Traceroute Tool.
In LISA, Seattle, WA, November 1999.

[73] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti. Lighthouses for
Scalable Distributed Location. In Intl. Workshop on Peer-To-Peer Systems,
Berkeley, CA, February 2003.

143

[74] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan, A. Gupta,
and A. Akella. On the Treeness of Internet Latency and Bandwidth. In
SIGMETRICS, Seattle, WA, 2009.

[75] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) lookup performance
for power-law query distributions in peer-to-peer overlays. In NSDI, CA,
2004.

[76] S. Ratnasamy, P. Francis, M. Hadley, R. Karp, and S. Shenker. A Scalable
Content-Addressable Network. In SIGCOMM, San Diego, CA, August
2001.

[77] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-Aware
Overlay Construction and Server Selection. In INFOCOM, New York, NY,
June 2002.

[78] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Lo-
cation and Routing for Large-Scale Peer-to-Peer Systems. In Middleware,
Heidelberg, Germany, November 2001.

[79] A. Rowstron and P. Druschel. Storage Management and Caching in PAST,
a Large-Scale, Persistent Peer-to-Peer Storage Utility. In Symposium on
Operating Systems Principles, Banff, AB, Canada, October 2001.

[80] S. Savage, A. Collins, and E. Hoffman. The End-to-End Effects of Internet
Path Selection. In SIGCOMM, Cambridge, MA, September 1999.

[81] M. Scheidegger and T. Braun. Improved Locality-Aware Grouping in
Overlay Networks. In KiVS, Bern, Switzerland, February 2007.

[82] M. Scheidegger and T. Braun. Meridian-based Grouping in Overlay Net-
works. it - Information Technology, 49, 2007.

[83] C. Schmidt and M. Parashar. Flexible information discovery in decentral-
ized distributed systems. In HPDC, WA, 2003.

[84] Searchspell. Searchspell typo, 2010. http://www.searchspell.com/typo/.

[85] K. Shanahan and M. Freedman. Locality Prediction for Oblivious Clients.
In Intl. Workshop on Peer-To-Peer Systems, Ithaca, NY, February 2005.

144

[86] Y. Shavitt and T. Tankel. Big-Bang Simulation for Embedding Network
Distances in Euclidean Space. In INFOCOM, San Francisco, CA, April
2003.

[87] A. Slivkins. Distance estimation and object location via rings of neighbors.
In PODC, Las Vegas, NV, 2005.

[88] A. Slivkins. Distributed Approaches to Triangulation and Embedding.
In the Symposium on Discrete Algorithms, Vancouver, BC, Canada, January
2005.

[89] Y.J. Song, V. Ramasubramanian, and E.G. Sirer. Optimal Resource Uti-
lization in Content Distribution Networks. In Computing and Information
Science Technical Report TR2005-2004, Cornell University, November 2005.

[90] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies with
Rocketfuel. In SIGCOMM, Pittsburgh, PA, August 2002.

[91] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications. In SIG-
COMM, San Diego, CA, August 2001.

[92] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval us-
ing self-organizing semantic overlay networks. In SIGCOMM, Germany,
2003.

[93] L. Tang and M. Crovella. Virtual Landmarks for the Internet. In Internet
Measurement Conference, Miami, Florida, October 2003.

[94] D. Tennenhouse and D. Wetherall. Towards an Active Network Architec-
ture. Computer Communication Review, 26(2), 1996.

[95] Adam Twiss, Mike Belshe, and Michael Cam-
panella. Apache HTTP server benchmarking tool.
http://httpd.apache.org/docs/2.0/programs/ab.html.

[96] Y. Vardi. Network Tomography: Estimating Source-Destination Traffic
Intensities from Link Data. American Statistical Association, 91, 1996.

[97] M. Waldvogel and R. Rinaldi. Efficient Topology-Aware Overlay Net-
work. In Hot Topics in Networks, Princeton, NJ, October 2002.

145

[98] Y. Wang, D. Burgener, M. Flores, A. Kuzmanovic, and C. Huang. Towards
Street-Level Client-Independent IP Geolocation. In NSDI, Boston, MA,
2011.

[99] B. Wong. Cubit: Approximate matching for peer-to-peer overlays, 2011.
http://www.cs.cornell.edu/˜bwong/cubit.

[100] B. Wong and E.G. Sirer. ClosestNode.com: An Open-Access, Scalable,
Shared Geocast Service for Distributed Systems. SIGOPS Operating Sys-
tems Review, 40(1), 2006.

[101] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A lightweight network
location service without virtual coordinates. In SIGCOMM, PA, 2005.

[102] B. Wong, A. Slivkins, and E.G. Sirer. Meridian: A Lightweight Network
Location Service without Virtual Coordinates. In Computing and Informa-
tion Science Technical Report TR2005-1982, Cornell University, May 2005.

[103] B. Wong, Y. Vigfússon, and E. G. Sirer. Hyperspaces for object clustering
and approximate matching in peer-to-peer overlays. In HotOS, 2007.

[104] I. Youn, B. Mark, and D. Richards. Statistical Geolocation of Internet
Hosts. In ICCCN, San Francisco, CA, 2009.

[105] M.A. Zaharia, A. Chandel, S. Saroiu, and S. Keshav. Finding content in
file-sharing networks when you can’t even spell. In Intl. Workshop on P2P
Systems, WA, 2007.

[106] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infrastructure
for Fault-Tolerant Wide-Area Location and Routing. In Technical Report
UCB/CSD-01-1141, UC Berkeley, April 2001.

146

