NABC Report 10: Agricultural Biotechnology and Environmental Quality: Gene Escape and Pest Resistance
Permanent URI for this collection
Published 1998 by NABC.
Concerns about the risks of altered genes migrating into non-crop plants and the risks of pests developing a resistance to genetically modified plant pesticides are of critical concern to people opposed to genetic engineering. Yet we cannot turn back the clock. If anything, the demand for genetically modified food and fiber crops is accelerating. Research and development, regulatory and public policy, and industrial and economic issues surround the discussion about genetic engineering. The general acceptance of agricultural biotechnology by growers is in contrast with the public’s concern, which is not always based on scientific research. In fact, some in the public question the validity of scientific research.
Bt (Bacillus thuringiensis) as an important tool against Lepidoptera, especially ones that have developed immunity to traditional pesticides. To avoid the possibility of insects becoming resistant to Bt, the EPA recommends refuges of 4 percent without any use of pesticide.
The tobacco mosaic virus resistant genes have proven very stable and durable over 25 years, but not all viruses are the same and not all risks are the same. And with more than 2,000 plant viruses, genetically engineering resistance to more than a single virus would be beneficial.
The early strength of opposition groups in Europe explain the greatly reduced level of consumer acceptance of GE crops compared to the US, Canada and Japan.
The growing world population requires an even increasing demand for food with limited area of cultivation. Genetic engineering of crops to grow under less than ideal conditions could be one of the tools to address the need for more food production. However, it is vital to keep in mind that big business calling for GE crops is never primarily concerned with the overall welfare of the public, but in their own profits.