Between Dec. 23, 2024 and Jan. 3, 2025, eCommons staff will not be available to answer email and will not be able to provide DOIs until after Jan. 6. If you need a DOI for a dataset during this period, consider Dryad or OpenICPSR. If you need support submitting material before the winter break, please contact us by Thursday, Dec. 19 at noon. Thank you!

eCommons

 

In Vitro Scaffold Construction for a Bio-artificial Liver

Other Titles

Abstract

The main focus of this investigation is to design a scaffold that will accommodate a growing Bio-Artificial Liver (BAL) with oxygen. The two design objectives are to find the maximum length and the distance between the artificial capillaries of the scaffold to provide adequate oxygen supply above 1.98 x 10-19 g/um3 to prevent hypoxia to the growing liver tissues. By utilizing industrial modeling software, FIDAP and GAMBIT, a model of a single capillary with liver tissue attached directly was constructed to simulate the oxygen delivery by means of diffusion and convection from the capillary wall to the tissue and the uptake by metabolism. From the results obtained, it was concluded that diffusion, not convection of the oxygen flow within the capillary was the dominant process of oxygen transport throughout the tissue. The maximum distance traveled into the tissue with capillary length of 60 ?m was 147 ?m from the capillary at the inlet side of the tissue while diffusion at the outlet tissue was at a modest 108 ?m. These values are unacceptable for the feasible construction of oxygen transport system solely based on diffusion. Thus, this investigation concludes that novel methods of greater complexity are needed to construct a more efficient and economically applicable oxygen delivery system for the mass production of bio-organs.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2004-06-17T21:22:03Z

Publisher

Keywords

liver, oxygen transport

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record