eCommons

 

Failure Detection and Consensus in the Crash-Recovery Model

Other Titles

Abstract

We study the problems of failure detection and consensus in asynchronous systems in which processes may crash and recover, and links may lose messages. We first propose new failure detectors that are particularly suitable to the crash-recovery model. We next determine under what conditions stable storage is necessary to solve consensus in this model. Using the new failure detectors, we give two consensus algorithms that match these conditions: one requires stable storage and the other does not. Both algorithms tolerate link failures and are particularly efficient in the runs that are most likely in practice --- those with no failures or failure detector mistakes. In such runs, consensus is achieved within 3d time and with 4n messages, where d is the maximum message delay and n is the number of processes in the system.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1998-06

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR98-1676

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record