eCommons

 

Using Information Flow to Design an ISA that Controls Timing Channels

Other Titles

Abstract

Information-flow control (IFC) enforcing languages can provide high assurance that software does not leak information or allow an attacker to influence critical systems. IFC hardware description languages have also been used to design secure circuits that eliminate timing channels. However, there remains a gap between IFC hardware and software; these two components are built independently with no abstraction for how to compose their security guarantees. This paper presents a proposal for an instruction set architecture (ISA) that can provide the appropriate abstraction for joining hardware and software IFC mechanisms. Our ISA describes a RISC-V processor that tracks information-flow labels at run time and uses these labels to eliminate or mitigate timing channels. To make the ISA more practical, it allows constrained downgrading of information; it permits trading off security for performance; and still offers control primitives such as system calls. We prove timing-sensitive noninterference modulo downgrading and nonmalleability for programs executing our ISA. This involves novel restrictions on the mutability of labels beyond previous dynamic IFC systems. Furthermore, we define specific security conditions which correct hardware can implement to provide software-level security and sketch how such hardware may be designed and verified.

Journal / Series

Volume & Issue

Description

Sponsorship

NSF grant CNS-1513797 DARPA contract HR0011-18-C-0014

Date Issued

2019

Publisher

Keywords

Security; Hardware Architecture; Side Channels; Information Flow

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Attribution-NonCommercial-ShareAlike 4.0 International

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record