eCommons

 

Transition Path Sampling and Forward Flux Sampling. Applications to Biological Systems.

Other Titles

Abstract

The last decade has seen a rapid growth in the number of simulation methods and applications dealing with the sampling of transition pathways of rare nanoscale events. Such studies are crucial, for example, for understanding the mechanism and kinetics of conformational transitions and enzymatic events associated with the function of biomolecules. In this review, a broad account of transition path sampling approaches is provided, starting from the general concepts, progressing to the specific principles that underlie some of the most important methods, and eventually singling out the so-called forward flux sampling method for a more detailed description. This is done because forward flux sampling, despite its appealing simplicity and potential efficiency, has thus far received limited attention from practitioners. While path sampling methods have a widespread application to many types of rare transitional events, here only recent applications involving biomolecules are reviewed, including isomerization, protein folding, and enzyme catalysis.

Journal / Series

Volume & Issue

Description

Sponsorship

This publication is based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). Additional support from the National Science Foundation Award 0553719 is also gratefully acknowledged. The authors are also grateful to J. Hernandez-Ortiz and P. Bolhuis for allowing us to modify their picture files.

Date Issued

2009-07-13

Publisher

Journal of Physics: Condensed Matter

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Fernando A Escobedo et al 2009 J. Phys.: Condens. Matter 21 333101

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

article

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record