eCommons

 

The stress field near the tip of a plane stress crack in a gel consisting of chemical and physical cross-links

Other Titles

Abstract

This data set is part of a study of the time dependent asymptotic stress fields near the tip of a Mode I plane stress crack. The analysis is based on a three-dimensional continuum model which describes the viscoelastic behavior of a hydrogel gel with permanent and transient cross-links. The viscoelasticity results from the breaking and healing of the transient cross-links in the gel network. We show that the crack tip fields satisfy a local correspondence principle – that is, the spatial singularities of these fields are identical to a hyper-elastic cracked body with the same but undamaged networks. Asymptotic results compare very well with finite element (FE) simulations on a single edge crack specimen loaded under constant stretch rate. We also compare the theoretical results (crack opening profile) with experiments and the agreement is excellent. The dominant strain field in our theory also agrees well with Digital Image Correlation (DIC).

Data included are: Sample Abaqus input file, Fortran code for user material (UMAT), and all data contained in the plots. The files are named according to the corresponding figure number in the paper, submitted to the Proceedings of the Royal Society, A, on December 18, 2018.

Journal / Series

Volume & Issue

Description

Sponsorship

National Science Foundation under Grant No. CMMI-1537087

Date Issued

2018-12-17

Publisher

Keywords

gel, large deformation, finite element, asymptotics, digital image correlation

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dataset

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record