Modeling an Injection Profile of Nanoparticles to Optimize Tumor Treatment Time with Magnetic Hyperthermia

Other Titles
Abstract
Hyperthermia treatment to destroy cancerous tissue is a highly effective treatment strategy for malignant tumors. The goal of hyperthermia treatment is to raise the tumor temperature high enough to kill cancerous cells while minimizing damage to normal surrounding tissue. This project focuses on optimizing the treatment time using iron oxide magnetic nanoparticles (MNPs) to induce hyperthermia in cancerous tumors. In this treatment, the MNPs are injected into the center of the tumor, and their movement through the tissue is modeled using pressure-driven Darcy flow and simple mass diffusion. The MNPs are activated by a magnetic coil surrounding the tissue that produces an AC magnetic field, and heat is produced due to friction between the nanoparticles as they change orientation with the alternating current. This friction is sufficient to produce hyperthermia. Because of the many parameters that can be changed in hyperthermia treatments, computational modeling of this process could provide a more efficient way of determining optimal treatments. However, most previous models do not model the injection and diffusion of nanoparticles, but rather have an exponential decay power equation as a heat source at the site of injection. To create a more accurate model, the injection process and mass diffusion of the nanoparticles can be modeled and coupled to the heating process through an electromagnetic heat source term. In this COMSOL model, a tumor was approximated as a sphere surrounded by a sphere of normal tissue. Nanoparticle heat production within the tumor during exposure to a magnetic field is proportional to the nanoparticle concentration, which can be determined from the diffusion model including Darcy fluid flow. The transient temperature profile of the tissue was then monitored to observe the extent of damage to both the tumor tissue and surrounding healthy tissue. Treatment time was then optimized for a specific initial nanoparticle fluid concentration and injection velocity. For a tumor with properties of a common liver tumor, nanoparticles with a concentration of 78600 g/m3 were injected at a flow rate of 20 μL/min for fifteen minutes and allowed to diffuse for 24 hours. Under these conditions, optimal heating time was determined to be 11.5 minutes. In the future, this model could be adjusted based on tumor size, geometry, and specific parameters such as density, as well as various types of nanoparticles, and used in a clinical setting to determine optimal treatment prior to beginning the hyperthermia treatment.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2015-05-19
Publisher
Keywords
Computer-Aided Engineering; Biomedical Processes
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
term paper
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record