eCommons

 

A 10-fs Multicolor Source for Ultrafast Spectroscopy and Quantum Communication

Other Titles

Abstract

Broadband multicolor lasers are able to provide valuable information concerning ultrafast molecular dynamics through time-resolved spectroscopy. Here, I present my work developing a multicolor, 10-fs laser source through the marriage of three key technologies: (1) a high-repetition-rate, 10-fs, energetic NIR front end, (2) NIR pulse shaping, and (3) adiabatic frequency conversion. These technologies provide the means to generate femtosecond pulses in the visible, near-IR, and mid-IR with amplitude and phase control without multiple com plex dispersion-management schemes, constituting a toolbox of femtosecond pulses that can be used to probe fleeting molecular dynamics. 100-µJ, 10-fs pulses are generated from the NIR front end, which are shaped and compressed with NIR 4f pulse shapers and subsequently converted to 10-fs visible (MIR) pulse using dispersion-managed adiabatic sum (difference) frequency generation. Compression of the NIR pulses has been confirmed using SHG FROG. The MIR pulses were measured using a sensitive, phase-matching-free technique called frequency-resolved optical switching. Additionally, various ap plications are reviewed including quantum frequency homogenization, simultaneously converting visible single photons to the telecom C-band and reducing their spectral distinguishability, and ultrafast time-resolved spectroscopy experiments planned for single-layer graphene, rhodopsin and various mutants, and DNA.

Journal / Series

Volume & Issue

Description

156 pages

Sponsorship

Date Issued

2021-12

Publisher

Keywords

adiabatic frequency conversion; multicolor femtosecond laser; nonlinear optics; quantum frequency conversion; ultrafast dynamics

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Moses, Jeffrey

Committee Co-Chair

Committee Member

Nishimura, Nozomi
Wise, Frank

Degree Discipline

Applied Physics

Degree Name

Ph. D., Applied Physics

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record