eCommons

 

Data from: The Role of Background Stress State in Fluid-Induced Aseismic Slip and Dynamic Rupture on a 3-meter Laboratory Fault

Other Titles

Abstract

These files contain data supporting all results reported in: "The Role of Background Stress State in Fluid-Induced Aseismic Slip and Dynamic Rupture on a 3-meter Laboratory Fault" by Cebry et al., where we found: Fluid injection stimulates seismicity far from active tectonic regions, however the details of how fluids modify on-fault stresses and initiate seismic events remains poorly understood. We conducted laboratory experiments using a biaxial loading apparatus with a 3 m saw-cut granite fault and compared events induced at different background shear stress levels. Water was injected at 10 ml/min and normal stress was constant at 4 MPa. In all experiments, aseismic slip initiated on the fault near the location of fluid injection and dynamic rupture eventually initiated from within the aseismic slipping patch. When the fault was near critically stressed, seismic slip initiated only seconds after MP a-level injection pressures were reached and the dynamic rupture propagated beyond the fluid pressure perturbed region. At lower stress levels, dynamic rupture initiated hundreds of seconds later and was limited to regions where aseismic slip had significantly redistributed stress from within the pressurized region to neighboring locked patches. We find that slow slip initiated when local stresses exceeded Coulomb failure criteria, but initiation of dynamic rupture required additional criteria to be met. Even high background stress levels required aseismic slip to modify on-fault stress to meet initiation criteria. We also observed slow slip events prior to dynamic rupture. Overall, our experiments suggest that initial fault stress, relative to fault strength, is a critical factor in determining whether a fluid-induced rupture will "runaway" or whether a fluid ­induced rupture will remain localized to the fluid pressurized region.

Journal / Series

Volume & Issue

Description

Sponsorship

National Science Foundation Grant EAR- 184 7139

Date Issued

2022-05

Publisher

Keywords

Induced seismicity; fluid injection; aseismic slip; laboratory experiments; background stress; initiation

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Cebry, S. B. L., Ke, C.-Y., and McLaskey, G. C. (2022) Data from: The role of background stress state in fluid-induced aseismic slip and dynamic rupture on a 3-meter laboratory fault, JGR: Solid Earth, submitted.

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

CC0 1.0 Universal

Types

dataset

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record