Automatic Segmentation of Crops in UAV Images
Loading...
No Access Until
Permanent Link(s)
Other Titles
Authors
Abstract
Remote sensing imagery has been increasingly utilized in agricultural production due to its convenience and cost-effectiveness. However, traditional methods for crop segmentation require significant time and manual effort. Therefore, this research proposed the use of threshold segmentation and deep learning techniques to achieve automatic crop segmentation in UAV images and evaluated their performance. Specifically, this research utilized image threshold segmentation, a custom UNet network, Deeplabv3+ and segment anything model(SAM) with multiple prompts. The results showed that the Intersection over Union (IoU) for threshold segmentation was 0.58. The IoU for UNet was 0.70, and for DeepLabV3+ it was 0.76. The IoU achieved by SAM with points prompt was 0.89, demonstrating superior crop segmentation performance. However, the masks generated using SAM automatic mask generation and a bounding box with a point prompt couldn’t segment crops effectively.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2023
Publisher
Keywords
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Attribution 4.0 International
Rights URI
Types
dissertation or thesis