eCommons

 

Functional Central Limit Theorem for Heavy Tailed Stationary Infinitely Divisible Processes Generated by Conservative Flows

Other Titles

Abstract

We establish a new class of functional central limit theorems for partial sum of certain symmetric stationary infinitely divisible processes with regularly varying Levy measures. The limit process is a new class of symmetric stable self-similar processes with stationary increments, that coincides on a part of its parameter space with a previously described process. The normalizing sequence and the limiting process are determined by the ergodic theoretical properties of the flow underlying the integral representation of the process. These properties can be interpreted as determining how long is the memory of the stationary infinitely divisible process. We also establish functional convergence, in a strong distributional sense, for conservative pointwise dual ergodic maps preserving an infinite measure.

Journal / Series

Volume & Issue

Description

Sponsorship

ARO grants W911NF-07-1-0078 and W911NF-12-10385, NSF grant DMS-1005903 and NSA grant H98230-11-1-0154

Date Issued

2012-09-18

Publisher

Keywords

infinitely divisible process; conservative flow; central limit theorem; self-similar process; pointwise dual ergodicity; Darling-Kac theorem

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record