eCommons

 

Semiclassical Approaches to Complex Chemical Simulation in Real Time

Other Titles

Abstract

Semiclassical (SC) theory offers a pedagogically rich connection between quantum and classical perspectives of nature, and, furthermore, is a promising approach to incorporating quantum effects into molecular dynamics simulations. However, a variety of numerical challenges associated with SC methods, such as the cumbersome search for special trajectories, or the integration of highly oscillatory functions (i.e. the SC sign problem"), generally renders SC theory impractical for all but very simple, low-dimensional systems. In this dissertation we derive a variety of mixed quantum-classical (MQC) representations of the real-time correlation function within the SC initial value representation (SC-IVR) using the modified Filinov filtration (MFF) technique. The most promising of these methods are subsequently tested on a number of low- and high-dimensional systems. Each of these methods have three significant advantages. (1) They offer a significant improvement upon the SC-IVR sign problem." (2) They offer mode-specific quantization in a dynamically consistent framework. And (3) they are significantly easier to implement than other leading SC-IVR methodologies. The extension of these methods to nonadiabatic systems is made as well. We conclude that, in future studies of a variety of non-equilibrium molecular systems, particularly those that exhibit strong nuclear quantum effects such as interference, the novel SC-IVR methods presented here should prove to be very powerful.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2019-05-30

Publisher

Keywords

Quantum Mechanics; Physical chemistry; Computational Chemistry; chemical physics; initial value representation; semiclassical dynamics; theoretical chemistry

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Ananth, Nandini

Committee Co-Chair

Committee Member

Loring, Roger F.
Ezra, Gregory Sion

Degree Discipline

Chemistry and Chemical Biology

Degree Name

Ph.D., Chemistry and Chemical Biology

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record