Topics in Theoretical Gravity

Other Titles
Abstract
This dissertation presents four topics dealing with various aspects of gravitation, from theoretical matters to practical issues. Chapter 2 is about the quasilocal energy, which is a mathematical tool for defining gravitational energy. We extend previous definitions so that they are valid within the event horizon of a black hole. We find that the energy at the center is finite rather than divergent, indicating that the nonlinearities of General Relativity cause a sort of renormalization. We explore a number of examples and point out a problem with some positivity theorems for this type of energy. Chapter 3 considers the thermodynamics of a charged black hole in a canonical ensemble. We calculate the thermodynamic phase diagram of a black hole with a fixed temperature and charge that is confined in a cavity. We show that the phase diagrams possess the same features as an AdS black hole, suggesting that results such as the AdS/CFT conjecture are at least approximately valid for the more realistic scenario of a black hole in a cavity. Chapter 4 is about the measurement of gravitational radiation. Laser interferometeric observatories are now in operation that can in principle detect some likely astrophysical sources. We study the hyperboloidal family of light beam shapes that have the potential of reducing the thermal noise and therefore increasing the sensitivity to gravitational waves. We show that finite mirror effects are significant and show that small changes in the mirror shape can substantially decrease the thermal noise, increasing the detection range of such observatories. Chapter 5 explores a modified theory of gravity called F(R) gravity which was proposed to solve the dark energy problem. We consider forms of F(R) that are intended to mimic standard General Relativity at high densities, but have low-density behavior that can explain the observed acceleration of the cosmological expansion. We discuss the chameleon mechanism for suppressing deviations from standard GR and show that it requires a fine-tuning to function, hence generic F(R) models without such fine-tuning are ruled out by Solar System and cosmological observations.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2008-08-01T13:44:04Z
Publisher
Keywords
general relativity; modified gravity
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record