Data from: Current-induced switching of thin film α-Fe2O3 devices imaged using a scanning single-spin microscope

Other Titles
Abstract

Electrical switching of Néel order in an antiferromagnetic insulator is desirable as a basis for memory applications. Unlike electrically driven switching of ferromagnetic order via spin-orbit torques, electrical switching of antiferromagnetic order remains poorly understood. Here we investigate the low-field magnetic properties of 30-nm-thick, c-axis-oriented α-Fe2O3 Hall devices using a diamond nitrogen-vacancy center scanning microscope. Using the canted moment of α-Fe2O3 as a magnetic handle on its Néel vector, we apply a saturating in-plane magnetic field to create a known initial state before letting the state relax in low field for magnetic imaging. We repeat this procedure for different in-plane orientations of the initialization field. We find that the magnetic field images are characterized by stronger magnetic textures for fields along [¯1¯120] and [11¯20], suggesting that despite the expected 3-fold magnetocrystalline anisotropy, our α-Fe2O3 thin films have an overall in-plane uniaxial anisotropy. We also study current-induced switching of the magnetic order in α-Fe2O3. We find that the fraction of the device that switches depends on the current pulse duration, amplitude, and direction relative to the initialization field.

Journal / Series
Volume & Issue
Description
Sponsorship
This work is primarily supported by the National Science Foundation (Grant No. DMR-2004466). Quantitative peak tracking was developed with support by the U.S. Department of Energy (DOE), Office of Science, National Quantum Information Science Research Centers (Grant No. 1F-60510). The PCB-based microwave resonator was developed with support from the U.S. DOE, Office of Science, Basic Energy Sciences (Grant No. DE-SC0019250). The development of the scanning NV microscope setup was supported by the Cornell Center for Materials Research (CCMR) with funding from the NSF MRSEC program (Grant No. DMR-1719875), including capital equipment support by CCMR and the Kavli Institute at Cornell. Sample growth is supported by the U.S. DOE, Office of Science, Basic Energy Sciences (Grant No. DE-SC0001304).
Date Issued
2023-06-05
Publisher
American Physical Society
Keywords
Magnetization switching; NV centers; Spin-orbit torque; Spintronics; Antiferromagnets; Scanning probe microscopy
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
CC0 1.0 Universal
Types
article
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record