eCommons

 

Synthetic Lethal Interaction Between ether-a-go-go Shaker and escargot Mutations in Drosophila

Other Titles

Abstract

Escargot (esg) is a member of the snail family of transcription factors. Gain-of-function esg mutantions have been identified in previous studies as strong suppressors of seizure behavior in Drosophila models for epilepsy (Hekmat-Scafe et al. 2005). Recently, during a screen utilizing the ether-a- go-go (eag) Shaker (Sh) double mutant to identify genes that affect oxidative stress sensitivity, we uncovered a lethal interaction between gain-of-function esg mutations and the eag Sh double mutant The eag and Sh genes encode potassium channel subunits; epilepsy studies have revealed that eag and Sh are also mild seizure suppressors (Kuebler et al. 2001). The esg gene interaction is thus of great interest as it rescues seizure prone mutations while causing lethality in animals with increased seizure resistance. This study investigates the lethal interaction between eag Sh and esg to better understand its underlying mechanisms. Our results indicate that lethality is caused by severely impaired motor control in the adult. The animal exhibits many adult specific phenotypes, with distinctive synaptic phenotypes in adult and larvae. These results suggest that the critical period for esg-induced lethality is during adult development which agrees with the results of epilepsy studies.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2007-07-06T13:12:20Z

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record