JavaScript is disabled for your browser. Some features of this site may not work without it.
How Accurate is Gaussian Elimination?

Author
Higham, Nicholas J.
Abstract
J.H. Wilkinson put Gaussian elimination (GE) on a sound numerical footing in the 1960's when he showed that with partial pivoting the method is stable in the sense of yielding a small backward error. He also derived bounds proportional to the condition number $\kappa(A)$ for the forward error $\| x - \hat{x} \|$, where $\hat{x}$ is the computed solution to $Ax = b$. More recent work has furthered our understanding of GE, largely through the use of componentwise rather than normwise analysis. We survey what is known about the accuracy of GE in both the forward and backward error senses. Particular topics include: classes of matrix for which it is advantageous not to pivot; how to estimate or compute the backward error; iterative refinement in single precision; and how to compute efficiently a bound on the forward error. Key Words: Gaussian elimination, partial pivoting, rounding error analysis, backward error, forward error, condition number, iterative refinement in single precision, growth factor, componentwise bounds, condition estimator.
Date Issued
1989-07Publisher
Cornell University
Subject
computer science; technical report
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR89-1024
Type
technical report