eCommons

 

The Complexity of Planar Compliant Motion Planning Under Uncertainty

Other Titles

Abstract

We consider the computational complexity of planning compliant motions in the plane, given geometric bounds on the uncertainty in sensing and control. We can give efficient algorithms for generating and verifying compliant motion strategies that are guaranteed to succeed as long as the sensing and control uncertainties lie within the specified bounds. We also consider the case where a compliant motion plan is required to succeed over some parametric family of geometries. While these problems are known to be intractable in 3D, we identify tractable subclasses in the plane.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1987-12

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR87-889

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record