JavaScript is disabled for your browser. Some features of this site may not work without it.
The Complexity of Optimization Problems

Author
Krentel, Mark W.
Abstract
We study computational complexity theory and define a class of optimization problems called OptP (Optimization Polynomial Time), and we show that TRAVELLING SALESPERSON, KNAPSACK and 0-1 INTEGER LINEAR PROGRAMMING are complete for OptP. OptP is a natural generalization of NP (Nondeterministic Polynomial Time), but while NP only considers problems at the level of their yes/no question, the value of an OptP function is the optimal value of the problem. This approach enables us to show a deeper level of structure in these problems than is possible in NP.
Date Issued
1987-05Publisher
Cornell University
Subject
computer science; technical report
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR87-834
Type
technical report