JavaScript is disabled for your browser. Some features of this site may not work without it.
Graph Coloring Using Eigenvalue Decomposition

Author
Aspvall, Bengt; Gilbert, John R.
Abstract
Determining whether the vertices of a graph can be colored using $k$ different colors so that no two adjacent vertices receive the same color is a well-known NP-complete problem. Graph coloring is also of practical interest (for example, in estimating sparse Jacobians and in scheduling), and many heuristic algorithms have been developed. We present a heuristic algorithm based on the eigenvalue decomposition of the adjacency matrix of a graph. Eigenvectors point out "bipartite-looking" subgraphs that are used to refine the coloring to a valid coloring. The algorithm optimally colors complete $k$-partite graphs and certain other classes of graphs with regular structure.
Date Issued
1983-02Publisher
Cornell University
Subject
computer science; technical report
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR83-545
Type
technical report