JavaScript is disabled for your browser. Some features of this site may not work without it.
An Analysis of the Total Least Squares Problem

Author
Golub, Gene H.; Van Loan, Charles
Abstract
Totla least squares (TLS) is a method of fitting that is appropriate when there are errors in both the observation vector $b (mxl)$ and in the data matrix $A (mxn)$. The technique has been discussed by several authors and amounts to fitting a "best" subspace to the points $(a^{T}_{i},b_{i}), i=1,\ldots,m,$ where $a^{T}_{i}$ is the $i$-th row of $A$. In this paper a singular value decomposition analysis of the TLS problem is presented. The sensitivity of the TLS problem as well as its relationship to ordinary least squares regression is explored. Aan algorithm for solving the TLS problem is proposed that utilizes the singular value decomposition and which provides a measure of the underlying problem's sensitivity.
Date Issued
1980-02Publisher
Cornell University
Subject
computer science; technical report
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR80-411
Type
technical report