JavaScript is disabled for your browser. Some features of this site may not work without it.
Examples Of Implicitization Of Hypersurfaces Through Syzygies

Author
Zlatev, Radoslav
Abstract
Let X be a smooth projective toric variety of dimension n [-] 1 and let [phi] : X [-][RIGHTWARDS ARROW] Pn be a generically finite rational map. The closed image Y can be defined by a single equation P(x), called the implicit equation. The implicitization problem asks for techniques for finding the implicit equation. This is an old problem in algebraic geometry, and can be solved effectively through elimination using Gr¨ bner bases. However, this solution represents a black box in relao tion to the geometry on the base locus and the closed image, and is unfeasible even for reasonably small examples. In this thesis, we use ideas from the two most popular non-Gr¨ bner basis approaches, o the method of the approximation complex and the method of moving surfaces, to construct a family of matrices N, one for each element in Pic(X), capturing determinantal representations for P(x). An algorithm for this calculation is described and implemented in the Macaulay2 system. Example calculations in previously intractable situations are presented.
Date Issued
2015-08-17Committee Chair
Stillman,Michael Eugene
Committee Member
Swartz,Edward B.; Knutson,Allen
Degree Discipline
Mathematics
Degree Name
Ph. D., Mathematics
Degree Level
Doctor of Philosophy
Type
dissertation or thesis