eCommons

 

Embedding, Distance Estimation and Object Location in Networks

Other Titles

Abstract

Concurrent with numerous theoretical results on metric embeddings, a growing body of research in the networking community has studied the distance matrix defined by node-to-node latencies in the Internet, resulting in a number of recent approaches that approximately embed this distance matrix into low-dimensional Euclidean space. A fundamental distinction between the theoretical approaches to embeddings and this recent Internet-related work is that the latter operates under the additional constraint that it is only feasible to measure a linear number of node pairs, and typically in a highly structured way. Indeed, the most common framework here is a "beacon-based" approach: one randomly chooses a small number of nodes ('beacons') in the network, and each node measures its distance to these beacons only. Moreover, beacon-based algorithms are also designed for the more basic problem of "triangulation", in which one uses the triangle inequality to infer the distances that have not been measured.

We give algorithms with provable performance guarantees for triangulation and embedding. We show that in addition to multiplicative error in the distances, performance guarantees for beacon-based algorithms typically must include a notion of "slack" -- a certain fraction of all distances may be arbitrarily distorted.

For arbitrary metrics, we give a beacon-based embedding algorithm that achieves constant distortion on a (1-epsilon)-fraction of distances; this provides some theoretical justification for the success of the recent networking algorithms, and forms an interesting contrast with lower bounds showing that it is not possible to embed all distances with constant distortion. For doubling metrics (which have been proposed as a reasonable abstraction of Internet latencies), we show that triangulation with a constant number of beacons can achieve multiplicative error (1+delta) on a (1-epsilon)-fraction of distances, for arbitrarily small constants epsilon, delta.

We extend these results in a number of directions: embeddings with slack that work for all epsilon at once; distributed algorithms for triangulation and embedding with low overhead on all participating nodes; distributed triangulation with guarantees for all node pairs; node-labeling problems for graphs and metrics; systems project on location-aware node selection in a large-scale distributed network.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2006-07-28T19:13:46Z

Publisher

Keywords

computer science; routing schemes; algorithms; distance labeling; distributed algorithms; triangulation; metrics; small-world networks; metric embeddings; networks; doubling dimension; embeddings with slack; doubling metrics; partial embeddings; beaconinng; scaling distortion; beacon-based; gracefully degrading distortion; virtual coordinates; growth-constrained metrics; internet latencies

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

bibid: 6476155

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record