JavaScript is disabled for your browser. Some features of this site may not work without it.
The role of true finiteness in the admissible recursively enumerable degrees

Author
Greenberg, Noam
Abstract
When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In fact, there are some constructions which
make an essential use of the notion of finiteness which cannot be replaced by the generalized notion of alpha-finiteness. As examples we discuss both codings of models of arithmetic into the recursively enumerable degrees, and non-distributive lattice embeddings into these degrees. We show that if an admissible ordinal alpha is effectively close to omega (where this closeness can be measured by size or by
cofinality) then such constructions may be performed in the alpha-r.e. degrees, but
otherwise they fail. The results of these constructions can be expressed in the
first-order language of partially ordered sets, and so these results also show that
there are natural elementary differences between the structures of alpha-r.e. degrees
for various classes of admissible ordinals alpha. Together with coding work which shows
that for some alpha, the theory of the alpha-r.e. degrees is complicated, we get that
for every admissible ordinal alpha, the alpha-r.e. degrees and the classical r.e.
degrees are not elementarily equivalent.
Date Issued
2004-07-16Subject
Admissible Recursion Theory; Recursively Enumerable Degrees; Finite
Has other format(s)
bibid: 6475944
Type
dissertation or thesis