eCommons

 

Charge Transport In Organic Electronic Devices

Other Titles

Abstract

Organic materials are currently being examined for their potential use as active conducting media in electronic devices. Computational methods were used to study the transport characteristics across single organic molecules and through organic molecular crystals as well as the possibility of chemical impurities in crystals. In particular, the dependence of conductance on the central dihedral angle of single molecule junctions containing 4,4'-diaminobipenyl derivatives was probed by combining electronic structure calculations with a tunneling model and comparing to experimental results from literature. The calculations and model were adequate in reproducing the trend observed in experiment, implying that the differences in conductance across this class of molecules can be attributed mainly to the central dihedral angle. A method for calculating hole mobilities in organic molecular crystals at room temperature was considered for crystals of pentacene, tetracene, and anthracene. Computed mobilities were found to have a sensitive dependence on the calculated parameters and to insufficiently predict mobility trends across the materials. Impurities of water molecules in surface vacancy defects of pentacene crystals were studied through the use of molecular dynamics. Water molecules were found to bind to these defects, which has implications for charge transport through pentacene crystals.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2010-04-09T20:28:04Z

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record