eCommons

 

Expression Of Proteins From Chimeric Tetrahymena Introns Integrated In Ribosomal Rna Genes Of Saccharomyces Cerevisiae

Other Titles

Abstract

The group I introns from Tetrahymena thermophila, Tth.L1925, and Physarum polycephalum, Ppo.L1925, are closely related, sharing 70% sequence identity in their ribozyme regions. However, Ppo.L1925 also contains an open reading frame (ORF) encoding the homing endonuclease I-PpoI, which is separated from the ribozyme by a 53 nucleotide 3’UTR region; Tth.L1925 lacks both the ORF and 3’UTR regions. Previous studies of Ppo.L1925 have shown that the I-PpoI protein is translated from the RNA Pol I-derived spliced intron RNA. In order to better understand Ppo.L1925-encoded ORF translation, I created several chimeric ORF-containing Tth.L1925 introns and integrated them into the rDNA of Saccharomyces cerevisiae. Previous attempts to exchange the I-PpoI ORF found that small (~300 bp) ORFs can be integrated whereas larger ORFs disrupt intron splicing. I found that Tth.L1925based introns could accommodate and express both small and larger ORFs; these introns produce protein at levels similar to proteins produced from wild-type Ppo.L1925 (~ 0.01% of total yeast protein). To better understand the effect of intron sequence on protein expression, I added Ppo.L1925 sequences to chimeric Tth.L1925 introns. Some 3’UTR sequences had previously been shown to increase expression from Ppo.L1925 nearly 20-fold; however, all of the 3’UTR sequences tested in chimeric Tth.L1925 introns lowered expression. Replacing the Tth.L1925 5’end sequence with that of Ppo.L1925, though, increased expression nearly 10-fold. To further study the effect of the intron 5’ end sequence on expression, I created an intron pool with random 5’ end sequences. About 25% of these introns had increased expression up to 20-fold, while about 50% had their expression lowered to undetectable levels. I examined two models for expression of chimeric intron-encoded ORFs that explain how 5’ end sequence changes could affect translation: interaction with the invasive growth IRES system and translation through formation of intron RNA circles. Addition of an invasive growth IRES sequence did not increase expression from a Tth.L1925-based intron, while RTPCR amplification of intron RNA circle junctions demonstrated no relationship between the circle species formed and expression level. These results suggest that the intron-encoded ORF is not being translated through either of these two models.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2010-04-09T20:21:11Z

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record