JavaScript is disabled for your browser. Some features of this site may not work without it.
Data from: Creep fronts and complexity in laboratory earthquake sequences illuminate delayed earthquake triggering
Author
Cebry, Sara Beth L.; Ke, Chun-Yu; Shreedharan, Srisharan; Marone, Chris; Kammer, David S.; McLaskey, Gregory C.
Abstract
These data are from Laboratory Earthquake Experiments from the Cornell 0.76 m apparatus in support of the following research: Earthquakes occur in clusters or sequences that arise from complex triggering mechanisms, but direct measurement of the slow subsurface slip responsible for delayed triggering is rarely possible. We investigate the
origins of complexity and its relationship to heterogeneity using an experimental fault with two dominant seismic asperities. The fault is composed of quartz powder, a material common to natural faults, sandwiched between 760 mm long polymer blocks that deform the way 10 meters of rock would behave. We observe periodic repeating earthquakes
that transition into aperiodic and complex sequences of fast and slow events. Neighboring earthquakes communicate via migrating slow slip, which resembles creep fronts observed in numerical simulations and on tectonic faults. Utilizing both local stress measurements and numerical simulations, we observe that the speed and strength of creep fronts are highly sensitive to fault stress levels left behind by previous earthquakes, and may serve as on-fault stress meters.
Sponsorship
This work was sponsored by National Science Foundation grants EAR-1763499, EAR-1847139, and EAR-1763305, European Research Council Advance Grant 835012 (TECTONIC), and US Department of Energy grants DE- SC0020512 and DE-EE0008763.
Date Issued
2022-09-14Rights
CC0 1.0 Universal
Type
dataset
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as CC0 1.0 Universal