eCommons

 

Data-Driven Robust Model Predictive Control Framework for Stem Water Potential Regulation and Irrigation in Water Management

Other Titles

Abstract

Improving the efficiency of irrigation control is crucial for sustainable water management. Most existing irrigation control systems are based on the control of soil moisture level. However, the stem water potential acts as a straightforward measure of plant water status in contrast to the soil moisture level, thereby being a key factor in irrigation control. In this work, we propose a data-driven robust model predictive control (DDRMPC) framework that utilizes stem water potential (SWP) as a basis for effective irrigation control of high value-added crops. By linearizing and discretizing a nonlinear dynamic model of water dynamics, we develop a state-space model that predicts the dynamic state of SWP. In the model, soil, root, and stem are the three compartments to describe current water status of the system. In addition, evapotranspiration and precipitation are the driving force and the water inlet, respectively. A robust optimal control problem is formulated to maintain SWP above a safe level to avoid detrimental effects on crops. To describe the uncertainty within prediction errors of evapotranspiration and precipitation, a data-driven approach is adopted, which achieves a desirable tradeoff between constraint satisfaction and water saving. Meanwhile, it is shown that the proposed DDRMPC ensures both feasibility and stability. A case study based on almond tree is carried out to showcase the effectiveness of the DDRMPC strategy relative to on-off control, certainty equivalent MPC and robust MPC. In particular, the control of SWP through DDRMPC can reduce the water consumption by 7.9% compared with on-off control while maintaining zero probability of constraint violation.

Journal / Series

Volume & Issue

Description

55 pages

Sponsorship

Date Issued

2020-12

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

You, Fengqi

Committee Co-Chair

Committee Member

Stroock, Abraham Duncan

Degree Discipline

Chemical Engineering

Degree Name

M.S., Chemical Engineering

Degree Level

Master of Science

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record