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This thesis contains several projects investigating aspects of the Ricci flow (RF),

from preserved curvature conditions, Harnack estimates, long-time existence

results, to gradient Ricci solitons.

Recently, Wilking [98] proved a theorem giving a simple criterion to check if

a curvature condition is preserved along the RF. Using his approach, we show

another criterion with slightly different flavor (interpolations of cone condi-

tions). The abstract formulation also recovers a known preserved condition.

Another project was initially concerned with the Ricci flow on a manifold

with a warped product structure. Interestingly, that led to a dual problem of

studying more abstract flows. Using the monotone framework, we derive sev-

eral estimates for the adapted heat conjugate fundamental solution which in-

clude an analog of G. Perelman’s differential Harnack inequality as in [81].

The behavior of the curvature towards the first finite singular time is also

a topic of great interest. Here we provide a systematic approach to the mean

value inequality method, suggested by N. Le [63] and F. He [59], and display a

close connection to the time slice analysis as in [97]. Applications are obtained

for a Ricci flow with nonnegative isotropic curvature assumption.

Finally, we investigate the Weyl tensor within a gradient Ricci soliton struc-

ture. First, we prove a Bochner-Weitzenböck type formula for the norm of the

self-dual Weyl tensor and discuss its applications. We are also concerned with

the interplay of curvature components and the potential function.
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CHAPTER 1

INTRODUCTION

This thesis is devoted to studying several aspects of the Ricci flow introduced

by R. Hamilton [51], from preserved curvature conditions, Harnack estimates,

long-time existence results, to gradient Ricci solitons.

Definition 1.0.1. (M, g(t)), 0 ≤ t ≤ T ≤ ∞, a manifold equipped a one-parameter

family of Riemannian metrics, is a solution to the Ricci flow if,

∂

∂t
g(t) = −2Rc(t). (1.1)

It is a powerful tool to prove the existence of canonical metrics on a manifold

with suitable initial data. Even though the equation is a weakly-parabolic sys-

tem, using DeTurck’s trick [41], we can transform it to a strictly parabolic flow.

Uniqueness and short-time existence follows but the flow generally develops

singularities in finite time. The theory, hence, depends largely on understand-

ing the formulation of singularity models, as limits in an appropriate sense. The

recent breakthrough was obtained by G. Perelman, whose non-collapsing result

makes it possible to take a limit in a general setting [81]. For dimension three,

building on Hamilton’s work, Perelman’s surgery essentially completed the ar-

guments for the Poincaré conjecture [82] . Since then, the Ricci flow played a key

role in the proofs of the Space Form theorem for manifolds with 2-positive cur-

vature operators by C. Böhm and B. Wilking [10] and the Differentiable Sphere

theorem by S. Brendle and R. Schoen ([13, 15]) for point-wise 1/4-pinched man-

ifolds.

Nevertheless, several aspects of the field remain elusive and intriguing. A

preserved curvature condition is a restriction on the curvature tensor that would
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be passed on to the limit. The Harnack estimate developed by G. Perelman [81]

plays a role in proving that it is possible to take a limit. Long-time existence

results concern with conditions on the curvature approaching the first finite sin-

gular time. Finally, a gradient Ricci soliton is a self-similar solution to the Ricci

flow and, thus, a special singularity model but it arises frequently in practice.

Now we describe the organization of the thesis. For preparation, Chapter 2

and 3 collect well-known facts about Riemannian geometry and the Ricci flow.

There is little original research in those chapters but the narrative can be specu-

lative occasionally, possibly reflecting the author’s naive perspective.

In Chapter 4, we investigate preserved conditions along the Ricci flow. Since

such a condition could be passed on to the limit, it is a key ingredient in ap-

plications of the Ricci flow (such as in celebrated works of [51, 81, 10, 13]).In

a recent development, Wilking [98] proved a theorem giving a simple criterion

in the Lie Algebra language. Using that approach, we show another criterion

with slightly different flavor (interpolations of cone conditions). The abstract

formulation also recovers some known preserved condition developed in [13].

Chapter 5 is initially concerned with the Ricci flow on a manifold with a

warped product structure. That leads to a dual problem of studying more ab-

stract geometric flows. Using the framework of monotone formulas, we derive

several estimates for the adapted heat conjugate fundamental solution which

include an analog of G. Perelman’s differential Harnack inequality in [81]. The

proof here is inspired by [78].

In Chapter 6 we study the behavior of the curvature towards the first finite

singular time. This topic has been intensively investigated but simple questions,
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such as whether the scalar curvature blows up, persistently remain open. Here

we provide a systematic approach to the mean value inequality method, sug-

gested by N. Le [63] and F. He [59]. We also display a close connection between

this method and time slice analysis as in [97]. Applications are derived for a

Ricci flow with the nonnegative isotropic curvature assumption.

Chapter 7 is about the Weyl tensor within a gradient Ricci soliton structure

(GRS). The Ricci flow in low dimension is relatively well understood thanks

to classification results of gradient Ricci solitons. In higher dimension, n > 3,

the situation is subtler mainly because of the non-triviality of the Weyl tensor.

Thus, it is interesting to investigate that setting, particularly in dimension four,

by combining different techniques including flow equations and a normal form

used to study Einstein manifolds. First, we prove a Bochner-Weitzenböck type

formula for the norm of the self-dual Weyl tensor and discuss its applications,

including connections between geometry and topology. We are also concerned

with the interaction of different components of Riemannian curvature and (gra-

dient and Hessian of) the soliton potential function. The Weyl tensor arises

naturally in these investigations. Applications here are rigidity results.
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CHAPTER 2

PRELIMINARIES

In this chapter we first fix our notation and then review some basics of Rieman-

nian geometry which will be used throughout the document.

2.1 Notations and Conventions

Let (Mn, g) be an n-dimensional manifold with Riemannian metric g. The Levi-

Civita connection is defined by,

2 〈∇XY,Z〉g =X 〈Y,Z〉g + Y 〈X,Z〉g − Z 〈X,Y〉g

+ 〈[X,Y],Z〉g − 〈[X,Z],Y〉g − 〈[Y,Z], X〉g .

Also, we denote ∇2
X,YZ = ∇X∇YZ − ∇∇XYZ and {ei}

n
i=1 a local coordinate. Conse-

quently, the Christoffel symbol can be calculated explicitly,

〈
∇eie j, ek

〉
+ Γk

i j =
1
2

gkl(
∂

∂ei
g jl +

∂

∂e j
gil −

∂

∂el
gi j).

2.1.1 Operators

Given 1-forms ωi ∈ T ∗M, we define,

(ω1 ∧ ... ∧ ωp)(X1, ...Xp) + det[ωi(X j)].

The wedge product ∧ can be extended for all forms using linearity and associa-

tivity.
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The volume form dµ is, for a positively oriented basis {ωi}ni=1 ∈ T ∗M,

dµ +
√

det(gi j)ω1 ∧ ... ∧ ωn.

The exterior derivative d and interior product ι are defined as follows:

d( fω1 ∧ ... ∧ ωp) = (d f ) ∧ ω1 ∧ .... ∧ ωp,

(dω)(X0, ...Xp) = Σ
p
0(−1) j(∇X jβ)(X0, ..., X̂ j, ..., Xp),

d(ω ∧ ψ) = (dω) ∧ ψ + (−1)pω ∧ (dψ),

(ιXω)(X1, ..., Xp) = ω(X, X1, ...Xp),

ιX(ω ∧ ψ) = (ιXω) ∧ ψ + (−1)pω ∧ (ιXψ).

Remark 2.1.1. Our convention for d and ι follows [83] and differs from [38] by scaling.

For differential forms γ, η of the same type p, the inner product is agreed to

be, for i1 < .... < ip, j1 < .... jp,

〈γ, η〉 = gi1 j1 ....gip jpγi1...ipη j1... jp .

In particular, 〈
ωi1 ∧ ... ∧ ωip , ω j1 ∧ ... ∧ ω jp

〉
+ det(δik jl).

The Hodge ∗ operator ΛpT ∗M → Λn−pT ∗M is defined via the volume form dµ:

(∗γ) ∧ η + 〈γ, η〉 dµ.

∗(ω1 ∧ ... ∧ ωp) = ωp+1 ∧ ... ∧ ωn.

The Lie derivative is defined though diffeomorphisms. Let X be a vector field

and φt the corresponding (locally-defined) flow. The Lie derivative of a tensor

5



D in the direction of X is just the first order term in a suitable Taylor expansion

of that tensor moved by the flow φt. That is,

LXD = lim
t→0

1
t
(D− (φt)∗D).

In particular, for a function f, vector fields X, Y, and tensors ω, ψ,

LX f = X f ,

LXY = [X,Y],

LX(ω ∧ ψ) = (LXω) ∧ ψ + ω ∧ (LXψ).

Also, we have the H. Cartan’s magic formula,

LX = d ◦ ιX + ιX ◦ d.

Finally, the divergence δ (or div) and Laplacian ∆ are defined as, with an

orthonormal coordinate,

(δT )(X1, ...Xm) = tr(w→ (∇w)(X1, ...Xm)) =
∑

i

(∇eiT )(ei, X1, ...Xm);

∆T = tr(∇2)T =
∑

i

∇2
ei,ei

S .

We also take the chance here to introduce the heat operator,

� =
∂

∂t
− ∆.

Remark 2.1.2. In an appropriate context, the divergence can be identified with the co-

differential (adjoint of d) with an opposite sign [8].

6



2.1.2 Curvature Notions

The Riemannian curvature is defined by,

R(X,Y,Z) = −∇2
X,YZ + ∇2

Y,XZ

R(X,Y,Z,W) = −
〈
∇2

X,YZ − ∇2
Y,XZ,W

〉
g
.

Remark 2.1.3. Our (3,1) curvature sign agrees with [1, 8] and opposite to [11, 38, 51,

83]. Our (4,0) curvature convention, however, is the same as [1, 8, 11, 51] and opposite

to [38, 83]. Consequently,

Rl
i jk =

∂

∂e j
Γl

ik −
∂

∂ei
Γl

jk + Γm
ikΓ

l
im − Γm

jkΓ
l
im.

If P ⊂ TxM is a 2-plane with an orthonormal basis {e1, e2}, the sectional cur-

vature of P is defined by

K(P) = R(e1, e2, e1, e2) = R1212.

The Ricci and scalar curvature are defined by, respectively,

Ri j = gpqRip jq,

S = gi jRi j.

We take the chance to define the conjugate heat operator, along a Ricci flow,

�∗ = −
∂

∂t
− ∆ + S.

In order to define the Weyl tensor, we first need to recall the Kulkarni-

Nomizu product for (2, 0) symmetric tensors A and B,

(A ◦ B)i jkl = AikB jl + A jlBik − AilB jk − A jkBil.

7



Then we have the following decomposition of curvature, for E = Rc − Sg
4 , W the

Weyl tensor,

R = W +
S g ◦ g

2n(n − 1)
+

E ◦ g
n − 2

= W −
S g ◦ g

2(n − 2)(n − 1)
+

Rc ◦ g
n − 2

. (2.1)

It can be seen from the equation that W inherits most of the symmetry from R,

see Section 2.3.

2.1.3 Identification between tensors and operators

Using the point-wise induced inner product, any anti-symmetric (2,0) tensor α

(a two-form) can be seen as an operator on the tangent space by,

α(X,Y) = 〈−α(X),Y〉 = 〈X, α(Y)〉 = 〈α, X ∧ Y〉 .

In particular, a bi-vector acts on a vector X as follows

(U ∧ V)X = 〈V, X〉U − 〈U, X〉V.

For instance, in dimension four, for ei j = ei ∧ e j:

e12 + e34 e13 − e24 e14 + e23 e12 − e34 e13 + e24 e14 − e23

e1 −e2 −e3 −e4 −e2 −e3 −e4

e2 e1 e4 −e3 e1 −e4 e3

e3 −e4 e1 e2 e4 e1 −e2

e4 e3 −e2 e1 −e3 e2 e1

(2.2)

In a similar manner, any symmetric (2, 0) tensor b can be seen as an operator

on the tangent space,

b(X,Y) = 〈b(X),Y〉 = 〈X, b(Y)〉 = 〈b, X ∧ Y〉 .
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Consequently, when b is viewed as a 1-form valued 1-form, d∇b denotes the

exterior derivative (a 1-form valued 2-form). That is,

(d∇b)(X,Y,Z) = (∇b)(X,Y,Z) + (−1)1(∇b)(Y, X,Z) = ∇Xb(Y,Z) − ∇Yb(X,Z).

Similarly, a (4, 0) tensor such as R,W can be interpreted as an operator on

two-forms, that is, a map from Λ2(T M) → Λ2(T M). Then, we normally take the

operator norm (sum of squares of eigenvalues) (this agrees with the tensor norm

defined in [38] for (2, 0) tensors but differs by 1/4-factor for (4, 0) tensors). More

precisely, for an orthonormal frame or coordinate,

|W|2 =
∑

i< j;k<l

W2
i jkl.

In addition, the norm of covariant derivative and divergence on these ten-

sors can be defined accordingly,

|∇W|2 =
∑

i

∑
a<b;c<d

(∇iWabcd)2,

|δW|2 =
∑

i

∑
a<b

((δW)iab)2.

For a tensor T : Λ2(T M) ⊗ (T M)→ R, we define

〈T, δW〉 =
∑
i< j;k

Ti jk(δW)ki j, (2.3)

〈T, iXW〉 =
∑
i< j;k

Ti jk(iXW)ki j. (2.4)

Also, the Einstein summation convention is used when dealing with indices.

Finally, when the context is clear, we will omit the measure when integrating.

9



2.1.4 Coordinate versus Frame

In order to study the geometry of a smooth manifold, it is essential to be able

to carry out various computation (such as calculating the curvature given its

metric). The two most popular tools are a local coordinate and a local frame.

Because of the dominance of these two concepts, let’s distinguish them first.

Let p be a point in a smooth manifold and U an open neighborhood of p.

A local coordinate { ∂
∂xi
}ni=1 is associated with a local coordinate chart {xi}

n
i=1

which is a diffeomorphic map between U and a open subset of the Euclidean

space Rn. The shorthand notation for ∂
∂xi

is just ∂i when the context is clear.

A local frame {Ei}
n
i=1 is a collection of vector fields on V such that they are

linearly independent and span the tangent space at each point in U. A local

frame is orthonormal if
〈
Ei, E j

〉
= δ

j
i .

In practice, it is often convenient to work with a normal coordinate (that is,

∇∂i |p= 0) or a normal orthonormal frame (∇Ei |p= 0). It can be shown that,

given an orthonormal basis {ei}
n
i=1 of the tangent space at p, there exist a normal

orthonormal frame and a normal coordinate around p such that their restric-

tions to that tangent space are exactly the given basis [83, Chapter 2].

Indeed, a local coordinate is usually constructed via the exponential map

while a local frame can be built via parallel translations. To illustrate the differ-

ence in calculation involved with each method, we’ll provide both perspectives

on certain calculation such as Section 2.2 or Lemma 2.5.1.
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2.2 The Riemannian Curvature

The purpose of this section is to show how to compute the Riemannian curva-

ture given its metric and review some of its properties.

2.2.1 Coordinate Calculation

In a local coordinate, the curvature can be calculated from the Christoffel sym-

bols Γk
i j as discussed earlier:

Γk
i j =

1
2

gkl(∂ig jl + ∂ jgil − ∂lgi j) (2.5)

Rl
i jk = −∂iΓ

l
jk + ∂ jΓ

l
ik − Γr

jkΓ
l
ip + Γ

p
ikΓ

l
jp (2.6)

Ri jkl = glmRm
i jk.

Remark 2.2.1. The formulae make clear that curvature components are essentially 2nd

derivatives of the metric. In that sense, the Bianchi identities (2.8), (2.9) essentially

expose the symmetry of the metric at the 2nd and 3rd orders.

2.2.2 Frame Calculation

The curvature can also be calculated by using a frame via Cartan’s structure

equations. Our treatment here follows [38, Chapter 1]. Let {ei} be an orthonor-

mal frame and {ωi} its dual, i.e. ωi(e j) = δi
j. The connection 1-form ω

j
i is defined

as, 〈
∇Xei, e j

〉
= ω

j
i (X).

11



Furthermore, it satisfies the following properties,

ωi
j = −ω

j
i ,

∇Xω
i = −ωi

j(X)ω j,

∇ei = ω
j
i ⊗ e j.

Remark 2.2.2. ωk
j(ei) ∼ Γk

i j but one is defined by a local frame while the other by a local

coordinate.

Define Rm j
i (X,Y) = 1

2

〈
R(X,Y)e j, ei

〉
then we have Cartan’s equations:

dωi = ω j ∧ ωi
j,

Rm j
i = dω j

i − ω
k
i ∧ ω

j
k.

Also, for computation convenience,

ωk
i (e j) = dωi(e j, ek) + dω j(ei, ek) − dωk(e j, ei).

2.2.3 Properties

Recall that,

R(X,Y,Z,W) = −
〈
∇2

X,YZ − ∇2
Y,XZ,W

〉
.

So it is easy to see the symmetry,

R(X,Y,Z,W) = −R(Y, X,Z,W) = R(Z,W, X,Y).
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Also, the (4, 0) curvature tensor R satisfies the following Bianchi first and second

identities,

(2.7)

Ri jkl + R jkil + Rki jl = 0, (2.8)

∇iR jklm + ∇ jRkilm + ∇kRi jlm = 0. (2.9)

As a consequence, we have the following contracted 2nd Bianchi identity in

terms of the divergence:

δ(Rc −
1
2

Sg) = 0 (2.10)

An immediate application is the flowing well-known fact.

Lemma 2.2.1. On a closed Riemannian manifold, for any smooth function f,∫
M

(
2
〈
Rc,∇2 f

〉
g
− S∆ f

)
dµ = 0

Proof. We have,

δ(Rc∇ f ) = (δRc)∇ f +
〈
Rc,∇2 f

〉
g

=
1
2
∇S∇ f +

〈
Rc,∇2 f

〉
g
.

Applying the divergence theorem yields,∫
M

(
2
〈
Rc,∇2 f

〉
g
− S∆ f

)
dµ =

∫
M

(
− ∇S∇ f − S∆ f

)
dµ = 0.

�

2.3 The Weyl Tensor in Dimension Four

In this section, we give a brief review of the Weyl tensor on an oriented four-

manifold (M, g).
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2.3.1 Decomposition of the Curvature

Recall the curvature decomposition (2.1):

R = W +
Sg ◦ g

2n(n − 1)
+

E ◦ g
n − 2

= W −
Sg ◦ g

2(n − 2)(n − 1)
+

Rc ◦ g
n − 2

.

We note that, as (4, 0) tensors, W, E ◦ g, g ◦ g are orthogonal. Consequently,

the Weyl tensor inherits algebraic properties of the curvature tensor and is also

traceless. Then it is easy to see the followings, for an orthonormal frame,

W1212 =
∑
2<i< j

Wi ji j.

More generally, if the tangent space is decomposed into orthogonal subspaces

N1,N2 then,

WN1 +
∑

i< j,i, j∈N1

Wi ji j =
∑

k<l,k,l∈N2

Wklkl.

That is, the Weyl “sectional curvature”s of complementing subspaces are rel-

atively comparable and then well-defined. 1 Also, it is noted that if the co-

dimension of N1 is 0 or 1 then WN1 = 0.

In dimension four the decomposition becomes,

R = W +
S
24

g ◦ g +
1
2

E ◦ g +W + U + V,

|R|2 = |W|2 + |U |2 + |V |2,

|U |2 =
1

2n(n − 1)
S2 =

1
24

S2,

|V |2 =
1

n − 2
|E|2 =

1
2
|E|2.

A special feature of dimension four is that the Hodge ∗ operator decom-

poses the space of two-forms (Λ2) orthogonally according to eigenvalues ±1.

1Berger’s inequalities (Lemma 6.4.2) compare sectional curvatures of the curvature tensor.
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Let sign(i, j, k) be the sign-um of the permutation of {1, 2, 3} and {αi}
3
i=1 a positive-

oriented orthogonal basis of Λ+
2 with |αi| =

√
2 and sign(i, j, k) = 1, then, accord-

ing to [2],

α2
i = −Identity,

αiα j = αk = −α jαi,〈
αi(X), α j(X)

〉
=

〈
X,−αiα jX

〉
= 〈X, αkX〉 = 0.

An example of such a basis is given by multiplying
√

2 the basis given in (2.11).

Consequently, we have the following result.

Lemma 2.3.1. Suppose (M, g) is a four-dimensional Riemannian manifold and X is a

vector field on M. At any point p such that Xp , 0,

TpM = Xp ⊕ Λ+
2 (Xp),

in which Λ+
2 (X) = {α(Xp), α ∈ Λ+

2 }.

Proof. Pick an orthogonal basis of Λ+
2 as above then it follows that {αi(Xp)}3i=1

are three orthogonal vectors and each is perpendicular to Xp. So the statement

follows. �

Let {ei}
4
i=1 be a positively oriented orthonormal basis of TpM, then a pair of

orthonormal bases of Λ±2 is given by,

{
1
√

2
(e12 + e34),

1
√

2
(e13 − e24),

1
√

2
(e14 + e23)} for Λ+

2 , (2.11)

{
1
√

2
(e12 − e34),

1
√

2
(e13 + e24),

1
√

2
(e14 − e23)} for Λ−2 .

Accordingly, the curvature is,

R =

 A+ C

CT A−

 , (2.12)
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for C essentially the traceless Ricci. In addition,

A± = W± +
S
12

Id±,

|A±|2 = |W±|2 +
S2

48
,

|Rc|2 −
S2

4
= |E|2 = 4|C|2 = 4tr(CCT ).

Also, we observe that W(Λ±2 ) ∈ Λ±2 , so it is unambiguous to define W± +W|Λ± . In

particular, with α± and β± the projection of α, β onto Λ±2 ,

W±(α, β) = W(α±, β±). (2.13)

2.3.2 Normal form of the Weyl Tensor

As W is traceless and satisfies the first Bianchi identity, there is a normal form

developed by M. Berger [7, 93] (it first came to our attention through the works

of [25, 80]). That is, there exists an orthonormal basis {ei}
4
i=1 of TpM, consequently

{e12, e13, e14, e34, e42, e23} being a basis of Λ2, such that, for A = diag(a1, a2, a3), B =

diag(b1, b2, b3), and a1 + a2 + a3 = b1 + b2 + b3 = 0,

W =

 A B

B A

 . (2.14)

Then, by (2.13),

W± =


A±B

2
B±A

2

B±A
2

A±B
2

 .
With respect to the basis given in (2.11),

W =

 A + B 0

0 A − B

 .
Hence we obtain the following well-known identities [39, 2.31].
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Lemma 2.3.2. Let (M4, g) be a four-dimensional Riemannian manifold, then the fol-

lowing tensorial equations hold,

(W±)ikpq(W±) j
kpq = |W±|2gi j, (2.15)

(W±)ikpq(W±)kpq
j =

1
2
|W±|2gi j.

Proof. We observe that these tensorial identities only depend on the structure of

these tensors. In particular, it suffices to prove for the Weyl tensor. Using the

normal form discussed above,

W1kpqWkpq
1 =

3∑
i=1

a2
i − 2(b1b2 + b2b3 + b3b1)

=

3∑
i=1

(a2
i + b2

i ).

Calculation can be done for other pairs of indexes to verify the statements. �

2.3.3 Some Geometry of the Weyl Tensor

If the manifold is closed, then the Gauss-Bonnet-Chern formula for the Euler

characteristic and Hirzebruch formulas for the signature [8] are given by,

8π2χ(M) =

∫
M

(|W|2 − |V |2 + |U |2) =

∫
M

(|W|2 −
1
2
|E|2 +

S 2

24
)

=

∫
M

(|R|2 − |E|2), (2.16)

12π2τ(M) =

∫
M

(|W+|2 − |W−|2). (2.17)

Remark 2.3.1. It follows immediately that if M admits an Einsterin metric E = 0, then

we have the Hitchin-Thorpe inequality

|τ(M)| ≤
2
3
χ(M).
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Furthermore, the Weyl tensor is involved in the definition of the

Weitzenböck operator, the curvature term that arises in the classical

Weitzenböck formula [80, Section 2].

Definition 2.3.3. Acting on two-forms, the Weitzenböck operator is,

P =
S
6

Id −W.

Using (2.12), P ≥ 0 is equivalent to S
4 Id±−A± = tr(A±)Id±−A± = S

6 Id±−W± ≥ 0.

A necessary condition is that |W±|
2 ≤ S 2

24 [80, Lemma 3.2]. Note that the converse

is not true.

Lemma 2.3.4. If S
6 Id± −W± ≥ 0 then |W±|

2 ≤ S2

6 .

Proof. Let λ1, λ2, λ3 be eigenvalues of W+ then we have:

λ1 + λ2 + λ3 = 0 and −
S
3
≤ λi ≤

S
6
.

Consider the function f (a, b, c) = a2 + b2 + c2 then we want to maximize f on the

plane a + b + c = 0 bounded by the the tube −S
3 ≤ a, b, c ≤ S

6 . Since the region is

compact, the function attains its maximum.

Suppose (a, b, c) maximizes the function then we can assume a ≤ b ≤ c. Then

a ≤ 0 ≤ c. If a > −S
3 then we can always increase the function by decreasing a

and increasing either b or c. Thus a = −S
3 and the result follows. �

Using the elementary technique above, we also obtain the following esti-

mate.

Lemma 2.3.5. In dimension 4, for E = Rc − Sg
4 , |W(E,E)| ≤ 1

2
√

3
|W||E|2.
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Proof. Since E is symmetric, we can choose an orthonormal basis that diagonal-

izes both E and g. Then,

W(E, E) =
∑
i< j

Wi ji jλiλ j = W1212(λ1λ2 +λ3λ4)+W1313(λ1λ3 +λ2λ4)+W1414(λ1λ4 +λ3λ2).

Algebraically, W and E are independent so we can think of W as fixed and try

to maximize f (λ1, λ2, λ3, λ4) given the constraint
∑

i λi = 0 and
∑

i λ
2
i = |E|2

Towards that end, we repeatedly apply the Lagrange-Euler equation to obtain:

W1414(−2λ1 − λ2 − λ3) + W1313(λ3 − λ2) + W1212(λ2 − λ3) = 2µ(2λ1 + λ2 + λ3),

W1313(−λ1 − 2λ2 − λ3) + W1414(λ3 − λ1) + W1212(λ1 − λ3) = 2µ(λ1 + 2λ2 + λ3),

W1212(−λ1 − λ2 − 2λ3) + W1313(λ1 − λ2) + W1414(λ2 − λ1) = 2µ(λ1 + λ2 + 2λ3).

Using −W1212 = W1313 + W1414 we can rewrite these equations as

W1212(λ1 + λ2) + W1313(λ1 + λ3) = µ(2λ1 + λ2 + λ3),

W1212(λ1 + λ2) + W1414(λ2 + λ3) = µ(λ1 + 2λ2 + λ3),

W1313(λ1 + λ3) + W1414(λ2 + λ3) = µ(λ1 + λ2 + 2λ3).

It is obvious that the system reduces further to

W1212(λ1 + λ2) = µ(λ1 + λ2),

W1313(λ1 + λ3) = µ(λ1 + λ3),

W1414(λ2 + λ3) = µ(λ2 + λ3).

Case 0. µ is different from all Wi ji j. Then the system can only be satisfied if

λ1 + λ2 = λ1 + λ3 = λ2 + λ3 = 0. So λi = 0 and f = 0.

Case 1. W1212 = W1313 = W1414 = 0 then f = 0.

Case 2. W1212 = W1313 = −1
2 W1414 , 0 then the above system can be satisfied in

two sub-cases:
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Subcase 21: µ = W1212 = W1313 then λ2 + λ3 = 0 and consequently λ1 + λ4 = 0.

Direct calculation yields that | f | = |E|2

2
|W|

2
√

3
= |W||E|2

4
√

3
.

Subcase 22: µ = W1414 then λ1 + λ3 = λ1 + λ2 = 0. Thus direct calculation yields

| f | = |W||E|2

2
√

3
.

Case 3. W1212,W1313,W1414 are distinct and W1212 = µ then, similar to sub-case 22,

λ1 = λ2 = −λ3 = −λ4 and | f | = |E|2|W1313 + W1414| <
|W||E|2

2
√

3
.

Summarizing these cases we have | f | ≤ |W||E|
2

2
√

3
. �

Remark 2.3.2. For a general dimension n and E = Rc − S
n g, it was proved that

|W(E,E)| ≤
√

n−2
2(n−1) |W||E|

2 [60, Lemma 3.4]. If n = 4, the constant is 1
√

3
.

2.4 Variational Formulas

In this section, we collect several variational formulas (as δ is reserved to denote

variation here, the divergence goes by div). Let (M, g) be a Riemannian manifold

and v a symmetric (2, 0) tensor. We consider the variation,

δ(g) = v.
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Then we have, for V = trg(v), [8, Theorem 1.174]:

2 〈(δ∇)XY,Z〉g = ∇Xv(Y,Z) + ∇Yv(X,Z) − ∇Zv(X,Y), (2.18)

δΓk
i j =

1
2

gkl(∇iv jl + ∇ jvil − ∇lvi j) (2.19)

(δR)(X,Y)Z = (∇Yδ(∇))(X,Z) − (∇Xδ(∇))(Y,Z), (2.20)

2δ(R)(X,Y,Z,U) = ∇2
Y,Zv(X,U) + ∇2

X,Uv(Y,Z) − ∇2
X,Zv(Y,U) − ∇2

Y,Uv(X,Z)

+ v(R(X,Y)Z,U) − v(R(X,Y)U,Z), (2.21)

δ(Ri j) =
1
2
∇l(∇iv jl + ∇ jvil − ∇lvi j) −

1
2
∇i∇ jV

= −
1
2

∆Lvi j − div∗(divv)i j −
1
2
∇iV j, (2.22)

δ(S) = −∆V + div(div(v)) − 〈v,Rc〉 (2.23)

δ(dµ) =
V
2

dµ. (2.24)

Here,

∆Lvi j = ∆vi j + 2Rik jlvkl − Rikv jk − R jkvik,

−2div∗(divv)i j = ∇i(divv) j + ∇ j(divv)i.

Now suppose M has boundary Σ with second fundamental form Ai j, mean cur-

vature H, and the inward normal vector e0. Then by [68, Section 3], with ∇ the

induced connection on Σ and i, j, k , 0,

Ai j =
〈
e0,∇eie j

〉
= −

1
2
∂0gi j,

δ(e0) = −
1
2

v00e0 − vi
0ei, (2.25)

δ(Ai j) =
1
2

(∇iv0 j + ∇ jv0i − ∇0vi j − Ai jv00)

=
1
2

(∇iv0 j + Akivk
j + ∇ jv0i + Ak jvk

i − ∇0vi j − Ai jv00), (2.26)

δ(H) = −vi jAi j + gi jδ(Ai j) = ∇ivi
0 −

1
2

(gi j∇0vi j + Hv00), (2.27)

δ(dµΣ) =
1
2

vi
idµΣ. (2.28)
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With above formulae, it is easy to calculate variations of well-known func-

tionals. For example, here is Perelman’s energy [81],

F (g, f ) =

∫
M

(|∇ f |2 + S)e− f dV.

Lemma 2.4.1. Let δg = v and δ f = ` then,

δF =

∫
M

[
− vi j(Ri j + ∇i∇ j f ) + (

1
2

V − `)(2∆ f − |∇ f |2 + S)
]
e− f dV.

Another example is the Einstein-Hilbert functional:

E(g) = Vol(M)
2−n

n

∫
M

Sdµ.

Lemma 2.4.2. If δg = v and S is constant then

δE = Vol(M)
2−n

n

∫
M

〈
−Rc +

S
n

g, v
〉

dµ. (2.29)

If g is Einstein and the variation is volume-preserving then, the second variation,

δ2E =
1
2

∫
M

〈
v,∆v + 2div∗(divv) + 2R∗v

〉
dµ

+
1
2

∫
M

(
2div2v − ∆V −

S
n

V
)
Vdµ, (2.30)

where (R ∗ v)i j = Ril jpvlp.

Furthermore, if the variation is conformal, i.e. v = f g, then

δ2E =
n − 2

2

∫
M
〈(1 − n)∆ f − S f , f 〉 dµ. (2.31)

Definition 2.4.3. A variation v is called transverse-traceless if divv = 0 = V .

Remark 2.4.1. A transverse-traceless variation can not be conformal.
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2.5 Conformal Transformation

Since conformal transformation is of general interest, we devote this section to

collect its related formulas. Most of the computation are readily adjusted from

the previous section. If (M, g) is a smooth Riemannian manifold and u = e f a

smooth function, a conformal change is given by:

g̃ = e2 f g.

Then, for any quantity D with respect to g, the corresponding for g̃ will be D̃.

Adjusting formula (2.18), we have:

∇̃XY = ∇XY + X( f )Y + Y( f )X − (X,Y)∇ f . (2.32)

Consequently, for a = Hess f − d f ⊗ d f + 1
2 |∇ f |2g,

R̃ =e2 f R − e2 f a ◦ g. (2.33)

Also,

dµ̃ =en f dµ,

∆̃h =e−2 f
(
∆h + (n − 2)∇k f∇kh

)
,

W̃ =e2 f W,

R̃c =Rc − (n − 2)a −
(
4 f +

n − 2
2
|∇ f |2

)
g,

S̃ =e−2 f
(
S − 2(n − 1)4 f − (n − 2)(n − 1)|∇ f |2

)
=e−2 f

(
S −

4(n − 1)
n − 2

e−
n−2

2 f4(e
n−2

2 f )
)
.

When the covariant derivative is involved, the transformation is nontrivial.

Lemma 2.5.1. Under the conformal change g̃ = u2g, the divergence of the Weyl tensor

is given by,

δW̃(X,Y,Z) = δW(X,Y,Z) + (n − 3)W(
∇u
u
, X,Y,Z).
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Proof. We provide two ways of doing calculation: by a coordinate and a frame.

First, let {ei}
n
i=1 be a normal coordinate (note that it does not stay normal under a

conformal transformation). In fact, by (2.32),

∇̃eie j =∇i j +
ui

u
e j +

u j

u
ei −
∇uδi j

u

=
ui

u
e j +

u j

u
ei −
∇uδi j

u
.

Then, we compute,

δW̃( jkl) =trace(w→ (∇̃wW̃)( jkl)) = g̃i j
〈
(∇̃iW̃)( jkl), e j

〉
= g̃ii

〈
(∇̃iW̃)( jkl), ei

〉
=u−2∇̃i(W̃i jkl) − u−2W̃(∇̃ii, j, k, l) − u−2W̃(i, ∇̃i j, k, l)

− u−2W̃(i, j, ∇̃ik, l) − u−2W̃(i, j, k, ∇̃il)

=u−2(u2Wi jkl) −W(2
ui

u
ei −
∇u
u
, j, k, l) −W(i,

ui

u
j +

u j

u
i − δi j

∇u
u
, k, l)

−W(i, j,
uk

u
i +

ui

u
k − δik

∇u
u
, l) −W(i, j, k,

ul

u
i +

ui

u
l − δil

∇u
u

)

=δW( j, k, l) + 2W(
∇u
u
, j, k, l) + nW(

∇u
u
, j, k, l) − 2W(

∇u
u
, j, k, l)

− 3W(
∇u
u
, j, k, l) + W( j,

∇u
u
, k, l) + W(k, j,

∇u
u
, l) + W(l, j, k,

∇u
u

)

=δW( j, k, l) + (n − 3)W(
∇u
u
, j, k, l).

Calculation using the frame: Let {ei}
n
i=1 be a normal orthonormal frame. Then,

correspondingly, {ẽi = ei
u }

n
i=1 is an orthonormal frame with respect to g̃. Then,

δW̃(X,Y,Z) =(∇̃ẽiW̃)(ẽi, X,Y,Z)

=∇̃ẽi(W̃(ẽi, X,Y,Z)) − W̃(∇̃ẽi ẽi, X,Y,Z)

− W̃(ẽi, ∇̃ẽi X,Y,Z) − W̃(ẽi, X, ∇̃ẽiY,Z) − W̃(ẽi, X,Y, ∇̃ẽiZ).

By equation (2.32),

∇̃ẽi ẽi =
1
u
∇i(

ei

u
) + 2u−3uiei − u−2∇u

u

=u−2∇iei + u−3uiei − u−2∇u
u
,

∇̃ẽi X =u−1∇iX + u−2uiX + ∇X f ẽi − 〈X, ẽi〉
∇u
u
.
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Therefore, since {ei}
n
i=1 is normal,

∇̃ẽi(W̃(ẽi, X,Y,Z)) =δW(X,Y,Z) + W(
∇u
u
, X,Y,Z),

W̃(∇̃ẽi ẽi, X,Y,Z) =W(
∇u
u
, X,Y,Z) − nW(

∇u
u
, X,Y,Z)

W̃(ẽi, ∇̃ẽi X,Y,Z) =2W(
∇u
u
, X,Y,Z),

W̃(ẽi, X, ∇̃ẽiY,Z) =W(
∇u
u
, X,Y,Z) −W(Y, X,

∇u
u
,Z),

W̃(ẽi, X,Y, ∇̃ẽiZ) =W(
∇u
u
, X,Y,Z) −W(Z, X,Y,

∇u
u

).

The result then follows immediately. �

Now we restrict to n = 4 and notice that,

S̃ =u3(−6∆ + S)u,

W̃ãb̃c̃d̃ = u−4W̃abcd = u−2Wabcd,

detW̃+ = u−6detW+.

Then we have the following formula for a conformal change for the covariant

derivative of the Weyl tensor.

Lemma 2.5.2. Let (M4, g) be a Riemmanian manifolds and g̃ = u2g. Then,

|∇̃W̃|2 = u−6|∇W|2 + 18u−8|∇u|2|W|2 − 10u−7∇u∇|W|2 + 16 〈δW, ι∇uW〉 .
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Proof. We calculate:

|∇̃W̃|2 =u−10
(
(∇̃eiW̃)abcd

)2
,

(∇̃eiW̃)abcd =∇i(u2Wabcd) − u2
(
W(∇̃eia, b, c, d) + W(a, ∇̃eib, c, d)

+ W(a, b, ∇̃eic, d) + W(a, b, c, ∇̃eid)
)

=u2∇iWabcd − 2uuiWabcd + uδiaW∇ubcd − uWibcdua

+ uδibWa∇ucd − uWaicdub + uδicWab∇ud − uWabiduc

+ uδidWabc∇u − uWabciud.

Now by summation over all indices using Lemma 2.3.2, we have:

(∇iWabcd)2 = |∇W|2, (uiWabcd)2 = |∇u|2|W|2,

(δiaW∇ubcd)2 = 4(W∇ubcd)2 = 4|∇u|2|W|2, (Wibcdua)2 = |∇u|2|W|2,

2∇iWabcduiWabcd =
〈
∇|W|2,∇u

〉
, ∇iWabcdδiaW∇ubcd = 〈δW, i∇uW〉 ,

∇iWabcdWibcdua =
〈
∇|W|2,∇u

〉
− 〈δW, i∇uW〉 , uiWabcdδiaW∇ubcd = |∇u|2|W|2,

uiWabcdWibcdua = |∇u|2|W|2, δiaW∇ubcdWibcdua = |∇u|2|W|2,

δiaW∇ubcdδibWa∇ucd = −|∇u|2|W|2, WibcduaWaicdub = −|∇u|2|W|2.

Also,

δiaW∇ubcdWaicdub = δiaW∇ubcdWabiduc = δiaW∇ubcdWabciud = 0,

δiaW∇ubcdδicWab∇ud = W∇ubidWbid∇u =
1
2
|∇u|2|W|2,

WibcduaWabiduc = Wib∇udW∇ubid =
1
2
|∇u|2|W|2.

The result then follows. �

Now we calculate the conformal change of a quantity related to a Bochner-

Weitzenbock’s formula.
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Lemma 2.5.3. Let (M4, g) be a Riemmanian manifolds and

h = ∆|W+|
2 − 2|∇W+|

2 − S|W+|
2 + 36detW+. (2.34)

Then under the conformal change g̃ = u2g for any positive C2-function u,

u6h̃ = h − 20(
|∇u|

u
)2|W+|

2 + 2
∆u
u
|W+|

2 + 10
∇u
u
∇|W+|

2 − 32u−1 〈δW+, ι∇uW+〉 . (2.35)

Proof. We abuse notation here to let W = W+ and calculate,

∆̃|W̃|2 =∆̃(u−4|W|2) = u−2(∆(u−4|W|2) − 2
∇u
u
∇(u−4|W|2),

=u−2
(
u−4∆|W|2 + |W|2∆u−4 + 2∇u−4∇|W|2

2|W|2
∇u
u
∇u−4 − 2u−4∇u

u
∇|W|2

)
,

=u−6∆|W|2 + 20u−8|W|2|∇u|2 − 4u−7|W|2∆u

− 10u−7∇u∇|W|2 + 8u−8|∇u|2|W|2,

=u−6∆|W|2 + 28u−8|W|2|∇u|2 − 4u−7|W|2∆u − 10u−7∇u∇|W|2.

S̃|W̃|2 =u−6S|W|2 − 6u−7|W|2∆u.

The result then follows by combining these equations with Lemma 2.5.2 which

is also valid for W±. �

2.6 Hyper-surfaces and Warped Products

In this section, we state a few calculation tools involved with hyper-surfaces

and warped products.

27



2.6.1 Coordinate Perspective

First, we start with a general computation which is similar to [35]. Consider

(Nn, g(s)), s ∈ (a, b), a manifold with an one-parameter family of metrics such

that d
dsg = 2v. Let M be the manifold N × (a, b) induced with the metric g =

ds2 + g(s).

Remark 2.6.1. The choices of v, −Rc(g(s)) and ∂s f
f g, correspond to the space-time con-

struction for the Ricci flow and the warped product g = ds2 + f 2(s)g respectively. For a

general hyper-surface, it can be understood that v = −A, the second fundamental form.

Lemma 2.6.1. Let {ei}
n
i=1 be a local coordinate on g(s) and ∂s = e0 then

Γ
0
i j = −vi j,

Γ
k
i j = Γk

i j,

Γ
k
i0 = Γ

k
0i = vk

i ,

Γ
k
00 = Γ

0
i0 = Γ

0
00 = 0,

R
l
i jk = Rl

i jk + v jkvl
i − vikvl

j,

R
l
i00 = ∂svl

i + vp
i vl

p,

∇
2
i, j f = ∇2

i, j f − Γ0
i j∂0 f = ∇2

i, j f + vi j fs,

∇
2
i,0 f = ∂i∂0 f − vk

i ∂k f .

If the coordinate is chosen to be normal then

R
l
0 jk = R0 jkl = −∇kv jl + ∇lv jk,

Rc00 = −∂sV − |v|2 (V = trg(s)v),

Rci0 = −∇iV + ∇ jvi j,

Rci j = Rci j − ∂svi j − Vvi j.
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Proof. First using (2.5) we calculate the Christoffel symbols. Then the curva-

ture is computed by (2.6), and the variation of the Christoffel symbol by (2.19).

Finally, the Hessian is,

∇
2
i j =

∂2

∂i∂ j
− Γ

k
i j∂k.

�

2.6.2 Frame Perspective

Now, we change the perspective and consider M = Nn × f F p with the metric

gM = g = gN + f 2gF . The calculation here is comparable to [8, Section 9.J] or [83,

Section 3.2].

Remark 2.6.2. Depending on the choice of N, F, and f, the manifold can be considered

as structurally different warped products as discussed later.

The computation below makes use of Cartan’s structure equations. Let {ei}

({ωi}) be a normal orthonormal (co)frame on N while {eα} ({ωα}) on F. Then

ei = ei and eα =
1
f

eα ( ωi
= ωi and ωα

= fωα )

are the orthonormal (co)frame for g.
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Thus, we have:

ωk
i = ωk

i ,

ωα
i =

fi

f
ωα

= fiω
α,

ωα
β = ωα

β ,

R
j
i = R j

i ,

R
α

i =
fi j

f
ω j
∧ ωα

−
f j

f
ω

j
i ∧ ω

α,

R
β

α = Rβ
α +
|∇N f |2

f 2 ωα
∧ ωβ.

Then,

R(ei, e j, ek, el) = R(ei, e j, ek, el),

R(eα, ei, eβ, e j) =
− fi j

f
δαβ,

R(eα, eγ, eβ, eγ) =
1
f 2 R(eα, eγ, eβ, eγ) −

|∇N f |2

f 2 δαβ,

R(ei, eα, ei, e j) = R(eα, ei, eα, eβ) = 0,

Rc(eα, eβ) = −
4 f
f
δαβ +

1
f 2 Rc(eα, eβ) − (p − 1)

|∇N f |2

f 2 δαβ,

Rc(ei, e j) = Rc(ei, e j) − p
fi j

f
.

Furthermore,

∇2
X,Yα = ∇X∇Yα − ∇∇XYα,

∇2
i, jα = ∇i(∇ jα) − ωk

j(ei)∇kα.
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Thus, for a function Φ,

∇
2
αβΦ =

1
f 2∇

2
αβΦ +

∇NΦ∇N f
f

δαβ,

∇
2
αiΦ =

1
f
∂α∂iΦ,

∇
2
i, jΦ = ∇2

i, jΦ,

∆Φ = 4NΦ +
1
f 2 ∆FΦ + p

∇NΦ∇N f
f

.

Next, we’ll show how the computation simplify for warped products.

2.6.3 Warped Product with an Interval Base

Given an interval I = (a, b), and (N, g(x)), x ∈ I, let

M = N × I, g = h2(x)dx2 + f 2(x)g(x) = ds2 + f 2(s)g(s).
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Adapted to this setting, we have:

ωk
i = ωk

i ,

ωk
0 = fsω

k,

R
j
i = R j

i − (
fs

f
)2ω j ∧ ωi,

R
j
0 =

fss

f
ω0 ∧ ω j,

R(ei, e j, ei, e j) =
1
f 2 R(ei, e j, ei, e j) − (

fs

f
)2,

R(ei, ∂s, e j, ∂s) =
− fss

f
δi j,

R(ei, ∂s, e j, ek) = 0,

R(ei, e j, ek, el) =
1
f 2 R(ei, e j, ek, el),

Rc00 = −(n − 1)
fss

f
= −

n − 1
h3 ( f ′′h − h′ f ′),

Rcii −
1
f 2 Rcii = −(n − 2)(

fs

f
)2 −

fss

f
= −(n − 2)(

f ′

f h
)2 −

1
h3 ( f ′′h − h′ f ′),

Rci j =
1
f 2 Rci j.

Also,

∇
2
00Φ = Φss,

∇
2
0,iΦ = ∂seiΦ −

fs

f
(eiΦ),

∇
2
i,iΦ = eieiΦ − Σn

k=1ω
k
i (ei)(ekΦ) +

fs

f
(Φs) =

1
f 2∇i,iΦ +

fs

f
Φs,

∇
2
i, jΦ = eie jΦ − Σn

k=1ω
k
i (e j)(ekΦ) =

1
f 2∇i, jΦ,

∆ −
1
f 2 ∆ = ∂2

s + (n − 1)
fs

f
∂s =

1
h2∂

2
x +

1
h2

(
(n − 1)

f ′

f
+

h′

h

)
∂x.
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2.6.4 Warped Product with a Manifold Base

Let g = g + f 2dx2 be a warped product metric on M = N × I. Then,

ωk
i = ωk

i ,

ω0
i =

fi

f
ω0,

R
j
i = R j

i ,

R
0
i =

fi j

f
ω j ∧ ω0 −

f j

f
ω

j
i ∧ ω

n,

R(ei, e j, ek, el) = R(ei, e j, ek, el),

R(ei, ∂s, e j, ∂s) =
− fi j

f
,

R(ei, ∂s, e j, ek) = 0,

Rc(∂s, ∂s) = −
4 f
f
,

Rci j = −
fi j

f
+ Rii.

As before, for a function Φ,

∇
2
00Φ = Φ00 +

∇Φ∇ f
f

,

∇
2
0,iΦ = Φ0i,

∇
2
i, jΦ = ∇i,iΦ,

∆Φ = ∆Φ + Φ00 +
∇Φ∇ f

f
.
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CHAPTER 3

FUNDAMENTALS OF THE RICCI FLOW

3.1 Existence

As mentioned earlier, the uniqueness and short-time existence of a Ricci flow

follows immediately from DeTurck’s trick . However, it generally develops

finite-time singularities. We say that (M, g(t)), t ∈ [0,T ), is a maximal solution

if it becomes singular at time T . In his first paper on this topic, Hamilton de-

scribed a characterization of the curvature approaching the singular time:

Theorem 3.1.1. [51, Theorem 14.1] Let (M, g(t)) 0 ≤ t < T < ∞ be a solution of the

Ricci flow on a closed manifold. Then the solution can be extended past time T or

lim
t→T

max
M
|R(x, t)| = ∞.

However, qualitatively the solution does not blow up too fast:

Lemma 3.1.2. (Doubling-time estimate) If (M, g(t)) is a Ricci flow on a closed man-

ifold and Q0 = maxM |R(x, 0)| then for all t ∈ [0, 1
16Q0

),

R(x, t) ≤ 2Q0.

For a proof, see [38, Lemma 6.1].

3.2 Evolution Equations

The Ricci flow is a deformation of the metric along the Ricci direction. The first

step in understanding the flow is to observe how the geometry evolves.
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3.2.1 Curvature

Here we collect evolution equations related to various notions of curvature.

First, the curvature tensor satisfies the following equation [51, Theorem 7.1],

∂

∂t
Ri jkl = ∆Ri jkl + 2(R2 + R])i jkl (3.1)

− gpq(RipRp jkl + R jpRipkl + RkpRi jpl + RlpRi jkp),

R2(X,Y,Z,W) =
1
2

R(X,Y, ep, eq)R(Z,W, ep, eq) (3.2)

R](X,Y,Z,W) = R(X, ep,Z, eq)R(Yep,W, eq) − R(X, ep,W, eq)R(Y, ep,Z, eq). (3.3)

It is possible to simplify the equation using the Uhlenbeck’s trick. The main idea

is to evolve the frame in calculation. To be precise, first we pick a vector bundle

V → M isomorphic to the tangent bundle T M → M and a bundle isomorphism

ι0 : V → T M. By pulling back the metric on TM at a fixed initial time, we obtain

a metric on the fiber of V. We let the isometry evolve by the equation

∂

∂t
ι(t) = Rc(t) ◦ ι(t).

Here Rc is a bundle map T M → T M. Then it can be shown that ι(t) pullbacks

varying metric g(t) on T M to the fixed metric on V. Consequently, the evolution

equation of the pullback of the curvature tensor is,

∂

∂t
R = ∆R + 2(R2 + R]) = ∆R + 2Q(R). (3.4)

It is easy to see that Q(R) can be seen as an algebraic curvature tensor and,

Rc(Q(R))ik =
∑
p,q

RipkqRcpq (3.5)

S(Q(R)) = |Rc|2. (3.6)
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Then we can write down the evolution equation for the Ricci curvature and the

scalar curvature,

∂

∂t
Rc(X,Y) = ∆Rc(X,Y) + 2

∑
p,q

R(X, ep,Y, eq)Rc(ep, eq) (3.7)

∂

∂t
S = ∆S + 2|Rc|2. (3.8)

Finally, the equation of the Weyl tensor can be deduced from (3.1) as in [32, Prop

1.1],

∂

∂t
W(t)i jkl =∆(Wi jkl) + 2(Ci jkl −Ci jlk + Cik jl −Cil jk)

− gpq(RcipWq jkl + Rc jpWiqkl + RckpWi jql + RcipWq jkl)

+
2

(n − 2)2 gpq(RcipRcqkg jl − RcipRcqlg jk + Rc jpRcqlgik − Rc jpRcqkgil)

+
2S

(n − 2)2 (Rcikg jl − Rcilg jk + Rc jlgik − Rc jkgil) (3.9)

+
2

n − 2
(RikR jl − R jkRil) +

2(S 2 − |Rc|2)
(n − 1)(n − 2)2 (gikg jl − gilg jk),

Ci jkl =gpqgrsWpi jrWslkq.

Remark 3.2.1. Since (3.9) is calculated from (3.1), it does not use the Uhlenbeck’s trick.

3.2.2 Geometric Quantities

It is also of great interest is to study how geometric operators like the Laplacian

and quantities such as distance and volume evolve along the flow.

The Laplacian on functions and volume form evolve by,

∂

∂t
(∆(t)) = 2Ri j · ∇i∇ j,

∂

∂t
dµ(t) = −Sdµ(t).
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If γ : [a, b] 7→ M is a fixed path then its length at time t is given by

L(t) =

∫ b

a
|
dγ
du

(u)|g(t)du =

∫
γ

ds.

Differentiating yields

∂L
∂t

=
1
2

∫ b

a
|
dγ
du
|−1∂g
∂t

(
dγ
du
,

dγ
du

)du = −

∫
γ

Rc(γ̇, γ̇)ds.

Thus,

min
γ

(
−

∫
γ

Rc(γ̇, γ̇)ds
)
+
∂−

∂t
|t=t0 d(x, y)

≤ max
γ

(
−

∫
γ

Rc(γ̇, γ̇)ds
)
+
∂−
∂t
|t=t0 dt(x, y)

where the extrema are taken over all minimal geodesics, with respect to g(t0), γ

joining x to y.

Remark 3.2.2. The distance function might not be smooth in t for fixed x, y but at least

Lipschitz continuous. Thus, the inequalities are understood in the sense of limsup and

liminf of forward (superindex) or backwark (lowerindex) quotients. For a more detailed

discussion, see [56, Lemma 17.3] and [36, Section 18.1]. If P(t) = supM |Rc(t)| then it

follows that,

∂+d(x, y)
∂t

≤ P(t)d(x, y),

| ln
dt2(x, y)
dt1(x, y)

| ≤

∫ t2

t1
P(t).

3.2.3 In Dimension Four

Here we collect some evolution equations for quantities in dimension four.

Lemma 3.2.1. Let (M4, g(t)), 0 ≤ t < T ≤ ∞, be a solution to Ricci flow, and the

curvature operator is decomposed as in (2.12). Then, for a moving frame,

∂

∂t
W+ = ∆W+ + 2(W+)2 + 4(W+)] + 2(CCT −

1
3
|C|2I+). (3.10)
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Proof. By [71, Prop. 4.6], for a moving (in time) frame (Uhlenbeck’s trick), we

have the following equations,

∂

∂t
A+ = ∆A+ + 2(A+)2 + 4(A+)] + 2CCT , (3.11)

A+ = W+ +
S
12

I+, (3.12)

S = 4tr(A+). (3.13)

Furthermore, if A+ is diagonalized with eigenvalues a1, a2, a3 then

(A+)2 =diag(a2
1 a2

2 a2
3), (3.14)

(A+)] =diag(a2a3 a1a3 a1a2). (3.15)

From (3.11), (3.13), (3.14), and (3.15), we arrive at,

∂

∂t
(
S
4

) =
∂

∂t
tr(A+) = ∆tr(A+) + 2tr((A+)2) + 4tr(A]) + 2tr(CCT )

=∆tr(A+) + 2(trA+)2 + 2|C|2.

Thus, by (3.12), we obtain

∂

∂t
W+ =

∂

∂t
A+ −

1
3

(
∂

∂t
S
4

)I+,

=∆A+ + 2(A+)2 + 4(A+)] + 2CCT −
1
3

(∆tr(A+) + 2(trA+)2 + 2|C|2)I+

=∆W+ + 2[(A+)2 −
(trA+)2

3
I+] + 4(A+)] + 2(CCT −

1
3
|C|2I+). (3.16)

If we denote λi = ai −
S
12 , for i = 1, 2, 3, then they are eigenvalues of W+ and we

calculate each term in the diagonal of (A+)2 −
(trA+)2

3 I+ to be,

(λi +
S
12

)2 −
1
3

S2

16
= λ2

i +
λiS
6
−

S2

72
.

In addition, each term in the diagonal of 2(A+)] is exactly,

2(λ j +
S
12

)(λk +
S
12

) = 2λ jλk −
Sλi

6
+

S2

72
.
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Therefore, (3.16) reduces to,

∂

∂t
W+ = ∆W+ + 2(W+)2 + 4(W+)] + 2(CCT −

1
3
|C|2I+).

�

Remark 3.2.3. Our convention agrees with [71] but differs from [52].

The following result will come in handy later.

Lemma 3.2.2. For a four-dimensional Riemmanian manifold (M, g), if the curvature is

represented as in (2.12), then,

〈
W+,CCT

〉
=

1
4

〈
W+,Rc ◦ Rc

〉
. (3.17)

Proof. Since the equation is certainly coordinate free, it suffices to show it for a

particular basis, namely one constructed by eigenvectors of Rc. With that basis,

let α±i , i = 1, 2, 3 as in (2.11) be a basis of Λ±2 . Then C is diagonalized and,

C(α+
1 , α

−
1 ) =

1
2

R(12 + 34, 12 − 34) =
1
2

(R1212 − R3434)

=
1
4

(Rc11 + Rc22 − Rc33 − Rc44).

Therefore,

4(CCT )(α+
1 , α

+
1 ) =

1
4

(S2 − 4(Rc11 + Rc22)(Rc33 + Rc44))

=
S2

4
− (Rc11 + Rc22)(Rc33 + Rc44) − Rc11Rc22 − Rc33Rc44

+ Rc11Rc22 + Rc33Rc44

=
S2

4
−

1
2

(S2 − |Rc|2) + Rc11Rc22 + Rc33Rc44

=
S2

4
−

1
2

(S2 − |Rc|2) + (Rc ◦ Rc)(α1, α1).

39



Similar calculation holds for α+
2 and α+

3 . As W+ is traceless, we obtain,

〈
W+,CCT

〉
=

1
4

〈
W+,Rc ◦ Rc

〉
.

�

Theorem 3.2.3. Let (M4, g(t), 0 ≤ t < T ≤ ∞, be a solution to the Ricci flow then we

have following evolution equation,

(
∂

∂t
− ∆)|W+|2 = −2|∇W+|2 + 36detΛ2

+
W+ +

〈
Rc ◦ Rc,W+〉 . (3.18)

Proof. The calculation below is done for a local moving (in time) normal or-

thonormal (in space) frame (using the Uhlenberk’s trick). First, since the pull-

back metric is fixed, we observe,

∂

∂t
|W+|2 =

∂

∂t

∑
i, j,k,l

(W+
i jkl)

2

=

〈
W+,

∂

∂t
W+

〉
.

∆|W+|2 =2|∇W+|2 + 2
〈
W+,∆W+〉 .

Therefore,

(
∂

∂t
− ∆)|W+|2 = − 2|∇W+|2 + 2

〈
W+, (

∂

∂t
− ∆)W+

〉
= − 2|∇W+|2 + 2

〈
W+, 2(W+)2 + 4(W+)] + 2(CCT −

1
3
|C|2I+)

〉
.

We use Lemma 3.2.1 in the second step. By (3.14) and (3.15) and that W+ is

traceless, we have,

2
〈
W+, 2(W+)2

〉
=12detW+,

2
〈
W+, 4(W+)]

〉
=24detW+,〈

W+, tr|C|2I+
〉

=0.
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Moreover, applying (3.17) yields,

2
〈
W+, 2CCT

〉
=

〈
W+,Rc ◦ Rc

〉
.

The result then follows. �

Remark 3.2.4. The Weyl tensor is considered as the traceless part of the curvature

operator (module out the Ricci and scalar components). Thus, it is interesting to com-

pare the above calculation with the evolution equation for the traceless part of the Ricci

curvature f = |E|2,

(
∂

∂t
− ∆) f 2 = − 2|∇Rc|2 +

|∇S|2

2
+

2
3

S f − 4E3 + 4W(E,E)

= − 2∇ f∇(ln S) −
2
S2 |S∇Rc − Rc∇S|2

+ 2 f 2(2|∇(ln S)|2 +
S
3

) − 4E3 + 4W(E,E).

This follows from, see [24],

(
∂

∂t
− ∆)|Rc|2 = − |∇Rc|2 + 4R(Rc,Rc),

R(Rc,Rc) =
1

n − 2
(
2n − 1
n − 1

S|Rc|2 − 2Rc3 −
S3

n − 1
) + W(Rc,Rc),

Rc3 =E3 +
3
n

SE2 +
S3

n2 .

Corollary 3.2.4. Let (M4, g(t)), 0 ≤ t < T ≤ ∞, be a Ricci flow solution, then

(
∂

∂t
− ∆)(

|W+|2

S2 ) = −
2
S4 |S∇W+ −W+∇S|2 +

〈
∇(
|W+|2

S2 ),∇ ln S2
〉

+ 36
detΛ2

+
W+

S2 +
〈Rc ◦ Rc,W+〉

S2 − 4
|W+|2|Rc|2

S3 . (3.19)

Proof. Notice that

∂

∂t
(
A
B

) =
B ∂
∂t A − A ∂

∂t B

B2 ,

∆(
A
B

) =
B∆A − A∆B

B2 −

〈
∇(

A
B

),∇(ln B2)
〉
.
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Then applying the evolution equation ∂
∂t S

2 = ∆S2 − 2|∇S|2 + 4S|Rc|2 and Theorem

3.2.3 yields the statement. �

Remark 3.2.5. On a GRS, the equation becomes

−∆ f (
|W+|2

S2 ) = −
2
S4 |S∇W+ −W+∇S|2 +

〈
∇(
|W+|2

S2 ),∇ ln S2
〉

+ 36
detΛ2

+
W+

S2 +
〈Rc ◦ Rc,W+〉

S2 − 4
|W+|2|Rc|2

S3 .

Proposition 3.2.5. Let (M4, g(t)), 0 ≤ t < T ≤ ∞, be a Ricci flow solution on a

closed manifold M. If detΛ2
+
W+ is nonpositive along the flow then there exists a constant

C = C(g(0)) such that |W
+ |

S < C is preserved along the flow.

Proof. Denote f = |W+ |2

S2 and h = |Rc|2

S2 . At a given point, we pick an orthonormal

basis which diagonalizes the metric g and the Ricci tensor Rc simultaneously.

Then by direct calculation,〈
Rc ◦ Rc,W+〉 =(W1234 + W1212)(R11R22 + R33R44)

+ (W1342 + W1313)(R11R33 + R22R44)

+ (W1423 + W1414)(R11R44 + R33R22).

Therefore, by elementary inequalities,〈
Rc ◦ Rc,W+〉 ≤ √3

2
|W+||Rc|2.

At the maximum of f, since detΛ2
+
W+ ≤ 0,

∂

∂t
fmax ≤ S f h(

√
3

2
√

f
− 4).

Consequently, if fmax >
3
64 then ∂

∂t fmax < 0. The result follows by the maximum

principle. �

Remark 3.2.6. Without the assumption on detΛ2
+
W+ then we have the following in-

equality:
∂

∂t
fmax ≤ S

√
f (2
√

6 f − 4h
√

f +

√
3h
2

).
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3.3 Convergence

A key step in the theory of the Ricci flow is to obtain a limit in an appropriate

sense. In this section, we describe that process. Our main references are [83,

Chapter 10], [46] and [1, Chapter 8].

3.3.1 Gromov-Hausdorff Distance

First, in order to talk about the convergence of manifolds, we need to develop a

notion about how to compare manifolds with different geometries. The appro-

priate concept is the Gromov-Hausdorff distance. B(P, r) denotes a ball of radius

r around P.

Definition 3.3.1. Suppose Z is a metric space, A1, A2 two subsets of Z, then the Haus-

dorff distance between them is defined as:

dH(A1, A2) = inf{ r |A2 ∈ B(A1, r) and A1 ∈ B(A2, r)}.

Suppose X, Y are two metric spaces, the Gromov-Hausdorff distance is defined as,

dGH(X,Y) = inf
i, j,Z
{ dH(i(X), j(Y)) | i : X 7→ Z, j : Y 7→ Z are isometric embeddings}

Suppose (X, x),(Y, y) are pointed metric spaces, the pointed GH distance is defined as,

dGH((X, x), (Y, y)) = inf{dGH(X,Y) + d(x, y)}.

Here d(x, y) is calculated according to the isometric embedding.

In practice, the following notion is useful.
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Definition 3.3.2. Let (X, dX, x) and (Y, dY , y) be pointed metric spaces. A map f :

(X, x) 7→ (Y, y) is called an ε-pointed GH approximation if

(. f (x), y) < ε,

B(y,
1
ε

) ⊂ B( f [B(x,
1
ε

)], ε),

|d(x1, x2) − d( f (x1), f (x2))| < ε for all x1, x2 ∈ B(x,
1
ε

).

Remark 3.3.1. The 2nd condition says that f maps X to almost all of Y while the 3rd

condition essential implies f is almost an isometry. Then the pointed GH distance is

equivalent to the infimum of ε such that there exist ε-pointed GH approximations f :

(X, x) 7→ (Y, y) and g : (Y, y) 7→ (X, x).

It is not difficult to show that these notions of distance satisfy the traditional

axioms including the triangle inequality. Moreover, using this formulation, Gro-

mov proved in the 80s the following result:

Definition 3.3.3. A family (Xi, xi) of path metric spaces is precompact if for each r > 0,

the family of balls B(xi, r) ∈ Xi is precompact with respect to the GH distance.

Theorem 3.3.4. [46, Theorem 5.3] The set of n-dimensional pointed Riemannian

manifolds with Ricci curvature uniformly bounded below is precompact with respect

to the pointed GH topology

Remark 3.3.2. The limit is actually a length space with curvature bounded from below

in the sense of an Alexandrov space [16].

A closer look at the proof of that theorem reveals that the Ricci curvature

bound is mostly used to obtain volume estimates. To be precise, let’s explain

the key lemma of that theorem.
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Definition 3.3.5. For each ε > 0, r > 0 let N(ε, r, X) be the maximum number of

disjoint balls of radius ε that fits within the ball of radius r centered at an x ∈ X.

The following result relates the precompactness with the boundedness of

N(ε, r,M).

Lemma 3.3.6. [46, Proposition 5.2] A family (Xi, xi) of pointed path metric space is

precompact iff each function N(ε, r, ·) is bounded on Xi. In this case, the family is rel-

atively compact, i.e, each sequence in the Xi admits a subsequence that converges to a

complete, locally compact path metric space in the GH topology.

The lemma clearly shows that estimates on the volume of small balls are the

key to prove compactness. Along a Ricci flow, there are certain situations when

we obtain volume estimates without using the bound on Ricci curvature. An

example is the following GH convergence for gradient shrinking ricci solitons.

Definition 3.3.7. A normalized gradient shrinking Ricci soliton is a triple (M, g, f )

such that,

Rc + Hess f =
1
2

g.

The entropy is given by,

µ(g) =

∫
M

(2∆ f − |∇ f |2 + S + f − n)(4π)−n/2e− f .

To see why the formula is well-defined, consult [58, Section 2].

Theorem 3.3.8. [58, Theorem 2.3] Let (Mi, gi, fi) be a sequence of normalized gradi-

ent shrinking Ricci solitons with entropy uniformly bounded below µ(gi) ≥ µ > −∞

then the sequence is volume non-collapsed at finite distances from the base points (min-

imum of fi) and a subsequence converges to a complete metric space in the pointed GH

topology.
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Remark 3.3.3. The volume estimates in this theorem nevertheless come from the vol-

ume comparison theorem for the Bakry-Emery Ricci tensor.

3.3.2 Smooth Convergence

When there is control over the curvature, it is possible to obtain smooth conver-

gence.

Definition 3.3.9. (Smooth Cheeger-Gromov convergence) A sequence (Mi, gi, pi) of

complete pointed Riemannian manifolds converges to a pointed Riemannian manifold

(M∞, g∞, p∞) if there exists:

1. An exhaustion Ui ⊂ M∞ with p∞ ∈ Ui.

2. A sequence of diffeomorphisms Φi : Ui 7→ Vi ⊂ Mi with Φ(p∞) = pi such that

(Φ∗i gi) converges in C∞-topology to g∞ on compact subsets in M∞.

The following theorem gives necessary criteria, curvature bound at each or-

der and lower injectivity radius, to obtain a smooth Cheeger-Gromov conver-

gence.

Theorem 3.3.10. (Cheeger-Gromov Compactness Theorem) Let (Mi, gi, pi) be a se-

quence of complete pointed Riemannian manifolds satisfying

1. |∇pRmgi | < Cp on Mi for each p ≥ 0

2. injgi
(pi) ≥ κ for some uniform κ > 0

Then there exists a subsequence that converges in the smooth Cheeger-Gromov sense to

a complete pointed manifold (M∞, g∞, p∞).
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In the theory of the Ricci flow, due to Shi’s estimates [92](see also [56]),

Hamilton proved the following version.

Theorem 3.3.11. [55, Theorem 1.2] Suppose (Mi, gi(t), xi)i∈N , t ∈ (α, β) 3 0, is a se-

quence of complete pointed Ricci flow solutions satisfying:

1. |R(gi(t))|gi(t) ≤ C on Mi × (α, β),

2. injgi(0)(xi) ≥ δ > 0.

Then the sequence sub-converges to a pointed complete solution of the Ricci flow

(M∞, g∞(t), x∞), t ∈ (α, ω).

Remark 3.3.4. The curvature bound can be replaced by various local uniform bounds

at the expense of the completeness, see [95].

The lower bound on injectivity radius is intrinsically related to the lower

bound on the volume ratio.

Theorem 3.3.12. (Cheeger-Gromov-Taylor) For any constant c > 0, s > 0, n ∈ N.

there exists a constant δ0 > 0 such that the following holds. Suppose (M, g) is a complete

Riemannian manifold with |R| < 1 and p is a point such that, for all r ∈ (0, s] ,

Vol(B(p, r))
rn ≥ c.

Then we have,

inj(p) ≥ δ0.

Remark 3.3.5. For a proof, see [38, 5.42].

For the Ricci flow, the lower bound on the volume ratio then follows from

Perelman’s non-collapsing result, Theorem 3.4.7. Therefore, we obtain the fol-

lowing convergence result.
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Definition 3.3.13. Given a constant 1 ≤ C < ∞ let

MC = {(x, t) : |R(x, t)| ≥
1
C

max
M
|R(., t)|}. (3.20)

From a sequence (xi, ti) of a solution (M, g(t)), the parabolic dilation is defined as, for

Ki = |R(xi, ti)|,

gi(t) = Kig(ti +
t

Ki
). (3.21)

Theorem 3.3.14. [38, Theorem 8.4] Let (M, g(t)), 0 ≤ t < T < ∞, be a maximal

solution to the Ricci flow on a closed manifold. If (xi, ti) is a sequence satisfying (3.20),

then (M, gi(t), xi) as defined by (3.21) sub-converges uniformly in every Ck-norm on

compact sets to a complete solution (M∞, g∞, x∞) of the Ricci flow.

3.4 Entropy functionals

In this section, we recall the definition and basic properties of Perelman’s func-

tionals along a Ricci flow.

3.4.1 Motivation and Definition

This subsection follows the discussion in [77]. On a closed manifold the heat

equation ∂tu = ∆u is the L2-gradient flow of the Dirichlet functional,

D(u) =

∫
M

1
2
|∇u|2dV,

∂tD =

∫
M
−(4u)2dV ≤ 0.

48



The Nash entropy is, for u = e− f ,

N(u) =

∫
M

u ln udV,

∂tN =

∫
M
−|∇ f |2e− f dV ≤ 0.

Taking the 2nd derivative yields,

∂2
t N =

∫
M

2u(|Hess( f )|2 + Rc(∇ f ,∇ f ))dV.

Now we write a positive function u in the normalized form u = (4πt)−n/2e− f ,∫
M

u = 1 and define the following functional (like N + ∂tN):

Ψ(u, t) =

∫
M

(t|∇ f |2 + f − n)udV. (3.22)

Also, we denote,

W(u, t) = t(2∆ f − |∇ f |2) + f − n (3.23)

For u satisfying the heat equation, then, because of (∆ f − |∇ f |2)u = −∆u and

integration by parts,

Ψ(u, t) =

∫
M

WudV.

Furthermore,

(∂t − ∆)(Wu) = −2ut
(
|Hess −

g
2t
|2 + Rc(∇ f ,∇ f )

)
.

Thus, we obtain,

∂tΨ(u, t) = −

∫
M

2ut
(
|Hess( f ) −

g
2t
|2 + Rc(∇ f ,∇ f )

)
dV

That motivates the definitions below.

Remark 3.4.1. For the discussion below, along the Ricci flow, it is convenient to let

τ = T − t > 0 and then �∗ = ∂τ − ∆ − S.
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Definition 3.4.1. On a closed manifold, the F functional is defined as, for
∫

e− f = 1:

F (g, f ) =

∫
M

(|∇ f |2 + S)e− f dV (3.24)

Remark 3.4.2. In particular, if �∗(e− f ) = 0 then (∂t +∆) f = |∇ f |2−S. Thus, by Lemma

2.4.1, along the Ricci flow, ∂tF =
∫

M
2u|Hess( f ) + Rc|2dV ≥ 0. Also we note that S

appears when calculating the evolution of the volume form.

Definition 3.4.2. On a closed manifold, for u = (4πτ)−n/2e− f ,
∫

u = 1, define:

W = τ(2∆ f − |∇ f |2 + S) + f − n,

Ψ(g, u, τ) =

∫
M

WudV =

∫
M

[
τ(|∇ f |2 + R) + ( f − n)

]
udV (3.25)

Remark 3.4.3. If �∗u = 0 then (∂t +4) f = |∇ f |2 −S + n
2τ . Furthermore, along the Ricci

flow,

�∗(Wu) = −2τ|Rc + Hess f −
g
2τ
|2u.

Then,

d
dt

Ψ(g, u, τ) = ∂t

∫
M

WudV = −

∫
M
�∗(Wu)dV

=

∫
M

2τ
∣∣∣∣Rc + Hess f −

g
2τ

∣∣∣∣2udV ≥ 0

3.4.2 Applications of Functionals

Here we collect some results on the fundamental solution of the conjugate heat

equation and applications of Perelman’s functional for a Ricci flow [81]. First

the theorem below describes a Harnack inequality along a Ricci solution.

Theorem 3.4.3. Let u be a positive solution to �∗u = 0 and u tends to a δ-function

as τ → 0. Then W ≤ 0 for all τ > 0. Furthermore, the maximum value of W is

non-decreasing in t.
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The following corollary is immediate.

Corollary 3.4.4. Under the assumptions as above, for any smooth curve γ(t)in M holds

−
∂

∂t
f (γ(t), t) ≤

1
2

(|γ̇(t)|2 + S(γ(t), t)) −
f (γ(t), t)
2(T − t)

,

−
∂

∂t
(2
√
τ f ) ≤

√
τ(S + |γ̇|2).

Then it is natural to define the backwards reduced geometry as follows.

Definition 3.4.5. Fix a point p and let Γ(q, τ) = {γ : [0, τ] 7→ M, γ(0) = p, γ(τ) = q}.

The reduced distance is defined as

`(q, τ) = inf
γ∈Γ

{ 1

2
√
τ

∫ τ

0

√
τ(R + |γ̇|2)dτ

}
. (3.26)

The backwards reduced volume is,

V(τ) =

∫
M

(4πτ)−n/2e−`(q,τ)dV(q). (3.27)

Using this machinery, Perelman was able to prove non-collapsing results.

Definition 3.4.6. A Riemannian manifold (M, g), is κ-non-collapsed at the scale r if

any metric ball B of radius r, with |R|(x) ≤ r−2 ∀x ∈ B, has volume at least κrn. It is

κ-non-collapsed if it is κ-non-collapsed at every scale.

Then the following statement holds..

Theorem 3.4.7. For a Ricci flow solution (Mn, g(t)), 0 ≤ t < T < ∞ and ρ ∈ (0,∞),

there exists a constant κ = κ(n, g(0),T, ρ) such that (M, g(t) is κ-non-collapsed below the

scale ρ. In that case, the solution is κ-non-collapsed.

Remark 3.4.4. There is an improved version, also due to Perelman, where only an

upper bound on the scalar curvature is needed. If the scalar curvature is uniformly

bounded by a constant C then we can pick ρ = 1/
√

C > 0. For any p ∈ M, r < ρ holds

VolB(p, r) ≥ κrn.
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3.5 Singularity Model: Gradient Ricci Soliton

As a weakly parabolic system, the Ricci flow can develop finite-time singulari-

ties and, consequently, the study of singularity models becomes essentially cru-

cial. In this section, we introduce some essential facts about gradient Ricci soli-

tons (GRS), which are self-similar solutions of the Ricci flow and arise naturally

in the analysis of singularities.

A GRS (M, g, f , λ) is a Riemannian manifold endowed with a special structure

given by a (soliton) potential function f , a constant λ, and the equation:

Rc + ∇∇ f = λg. (3.28)

Depending on the sign of λ, a GRS is called shrinking (positive), steady (zero),

or expanding (negative). In particular an Einstein manifold N can be considered

as a special case of a GRS where f is a constant and λ becomes the Einstein con-

stant. A less trivial example is a Gaussian soliton (Rk, gsd, λ
|x|2

2 , λ) with gsd being

the standard metric on Euclidean space. It is interesting to note that λ can be

an arbitrary real number and that the Gaussian soliton can be either shrinking,

steady or expanding. Furthermore, a combination of those two above, by the

notation of P. Petersen and W. Wylie [84], is called a rank k rigid GRS, namely a

quotient of N×Rk. Other nontrivial examples of GRS are rare and mostly Kähler,

see [19, 43].

In recent years, following the interest in the Ricci flow, there have been var-

ious efforts to study the geometry and classification of GRS’s; for example, see

[20] and the citations therein. In particular, the low-dimensional cases (n = 2, 3)

are relatively well-understood. For n = 2, Hamilton [53] completely classified

shrinking gradient solitons with bounded curvature and showed that they must

be either the round sphere, projective space, or Euclidean space with standard
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metric. For n = 3, utilizing the Hamilton-Ivey estimate, Perelman [82] proved

an analogous theorem. Other significant results include recent development

of Brendle [12] showing that a non-collapsed steady GRS must be rotationally

symmetric and is, therefore, isometric to the Bryant soliton.

In higher dimensions, the situation is more subtle mainly due to the non-

triviality of the Weyl tensor (W) which is vacuously zero for dimension less than

four. One general approach to the classification problem so far has been impos-

ing certain restrictions on the curvature operator. An analogue of Hamilton-

Perelman results was obtained by A. Naber proving that a four dimensional

complete non-compact GRS with bounded nonnegative curvature operator

must be a finite quotient of R4, S 2 × R2 or S 3 × R [75]. In [62], B. Kotschwar

classified all rotationally symmetric GRS’s with given diffeomorphic types on

Rn, S n−1 × R or S n. Note that any rotationally symmetric Riemannian manifold

has vanishing Weyl tensor.

Thus, a natural development is to impose certain conditions on that Weyl

tensor. If the dimension is at least four, then a complete shrinking GRS with

vanishing Weyl tensor must be a finite quotient of Rn, or S n−1×R or S n following

the works of [79, 103, 28, 85]; a steady GRS is flat or rotationally symmetric

(that is, a Bryant Soliton) by [21]. The assumption W ≡ 0 can be weakened to

δW ≡ 0, a closed or non-compact shrinking GRS must be rigid [28, 44, 74]; or

in dimension four, to the vanishing of self-dual Weyl tensor only, a shrinking

GRS with bounded curvature must be a finite quotient of R4, S 3 × R, S n, or CP2,

and steady GRS must be a Bryant soliton or flat [34]. There are some other

classifications based on, for instance, Bach flatness [18] or assumptions on the

radial sectional curvature [85].
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Next, we collect important identities associated with a GRS. Algebraic ma-

nipulation of (3.28) and application of the Bianchi identities lead to following

formulas (for a proof see [38]),

S + ∆ f = nλ, (3.29)

1
2
∇iS = ∇ jRi j = Ri j∇

j f , (3.30)

Rc(∇ f ) =
1
2
∇S, (3.31)

S + |∇ f |2 − 2λ f = constant, (3.32)

4S + 2|Rc|2 = 〈∇ f ,∇S〉 + 2λS. (3.33)

Remark 3.5.1. If λ ≥ 0, then S ≥ 0 by the maximum principle and equation (3.33).

Moreover, a complete GRS has positive scalar curvature unless it is isometric to the flat

Euclidean space [86].

One motivation of the study to GRS’s is that they arise naturally as self-

similar solutions to the Ricci flow. For a fixed GRS given by (3.28) with g(0) = g

and f (0) = f , we define ρ(t) := 1 − 2λt > 0, and let φ(t) : Mn → Mn be a one-

parameter family of diffeomorphisms generated by X(t) := 1
ρ(t)∇g(0) f . By pulling

back,

g(t) = ρ(t)φ(t)∗g(0),

Rc(t) = φ∗Rc(0) =
λ

ρ(t)
g(t) −Hessg(t) f (t).

Then (M, g(t)), 0 ≤ t < T , is a solution to the Ricci flow, where T = 1
2λ (= ∞) if
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λ > 0 (λ ≤ 0). Other important quantities along the flow are given below,

f (t) = f (0) ◦ φ(t) = φ(t)∗ f ,

S(t) = trace(Rc(t)) =
nλ
ρ(t)
− ∆g(t) f (t),

ft = |∇ f |2g(t),

τ(t) = T − t =
ρ(t)
2λ

,

u = (4πτ)−n/2e− f ,

Ψ(g, τ, f ) =

∫
M

(
τ(|∇ f |2 + S) + f − n

)
udµ

= −τC(t)
∫

M
udµ.

3.5.1 New Sectional Curvature

In this subsection, we prove some results in dimension four to illustrate that

classical techniques for Einstein 4-manifolds can be adapted to study GRS’s.

For a four-dimensional GRS (M, g, f , λ), we define

H = Hess f ◦ g. (3.34)

Then, with respect to bases given by (2.11), we have

H =

 A B

BT A

 , (3.35)

with

A =
∆ f
2

Id ,

B =


f11+ f22− f33− f44

2 f23 − f14 f24 + f13

f23 + f14
f11+ f33− f22− f44

2 f34 − f12

f24 − f13 f34 + f12
f11+ f44− f22− f33

2

 .
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Remark 3.5.2. In particular 〈H,W〉 = 0.

We further define a new “curvature” tensor R by

R = R +
1
2

H (3.36)

= W +
S
24

g ◦ g +
1
2

(Rc −
S
4

g) ◦ g +
1
2

H

= W −
S
12

g ◦ g +
1
2
λg ◦ g = W + (

λ

2
−

S
12

)g ◦ g.

Thus, it follows immediately that, with respect to (2.11),

R =

 A
+

0

0 A
−

 ,
with A

±
= W±+(λ− S

6 )Id = W±+(∆ f
4 + S

12 )Id. Furthermore, following the argument

in [7], we obtain,

Proposition 3.5.1. There exists a normal form for R. More precisely, at each point,

there exits an orthonormal base {ei}
4
i=1, such that with respect to the corresponding base

{e12, e13, e14, e34, e42, e23} for Λ2 and as an operator on 2-forms,

R =

 A B

B A

 ,
with A = diag(a1, a2, a3) and B = diag(b1, b2, b3). Moreover, a1 = min K, a3 = max K

and |bi − b j| ≤ |ai − a j|, where K is the “sectional curvature” of R, i.e., K(e1, e2) = R1212

for any orthonormal vectors e1 and e2.

Remark 3.5.3. Can a GRS be characterized by the existence of such a function f with

R constructed as above having the normal form?

Next, we investigate the assumption of having a lower bound on this new

sectional curvature similar to [49]. For ε < 1/3, suppose that

K ≥ ελ. (3.37)
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Equivalently, for any orthonormal pairs ei and e j, that is

Ri ji j ≥ ελ⇔ Ri ji j +
fii + f j j

2
≥ ελ. (3.38)

Then we have the following lemma.

Lemma 3.5.2. Let (M, g, f , λ) be a GRS, then assumption (3.37) implies the following:

S + 3∆ f ≥ 12ελ,

S ≤ 6(1 − ε)λ,

∆ f ≥ 2(3ε − 1)λ,

1
√

6
(|W+| + |W−|) ≤ 2(1 − ε)λ −

S
3
.

The equality happens in the last formula if and only if W± has the form

a±diag(−1,−1, 2), with a± ≥ 0 and

a+ + a− = 2(1 − ε)λ −
S
3
.

Proof. All inequalities follow from tracing equation (3.38) and the soliton equa-

tion S + ∆ f = 4λ except the last one.

For the last inequality, first note that any two form φ can be written as a

simple wedge product of 1-forms iff φ ∧ φ = 0. In dimension four, with respect

to (2.11), that is equivalent to φ = φ+ + φ− and |φ+| = |φ−. Therefore, in light of

Proposition 2.14, assumption (3.37) is equivalent to

a+ + a− + 2λ −
S
3
≥ 2ελ (3.39)

with a+, a− are the smallest eigenvalues of W±. Using the algebraic inequalities

−a+ ≥
1
√

6
|W+|, (3.40)

−a− ≥
1
√

6
|W−|, (3.41)
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we obtain:

2(1 − ε)λ −
S
3
≥

1
√

6
(|W+| + |W−|).

Equality happens if and only if the equality happens in (3.39) and (3.40) (or

(3.41)). The result then follows immediately.

�

Lemma 3.5.3. Let (M, g, f , λ) be a closed GRS with assumption (3.37), then∫
M

(|W+| + |W−|)2 ≤

∫
M

2S 2

3
dµ − 8(1 − ε)(1 + 3ε)λ2V(M).

Again equality holds if W± has the form a±diag(−1,−1, 2) with a± ≥ 0 and

a+ + a− = 2(1 − ε)λ −
S
3
.

Proof. Applying Lemma 3.5.2, we compute∫
M

(2(1 − ε)λ −
S
3

)2 =4(1 − ε)2λ2V(M) −
4(1 − ε)λ

3

∫
M

S +

∫
M

S 2

9

=4(1 − ε)2λ2V(M) −
4(1 − ε)λ

3
4λV(M) +

∫
M

S 2

9

=4(1 − ε)λ2V(M)(−ε −
1
3

) +

∫
M

S 2

9
.

�

Remark 3.5.4. If we use S ≤ 6(1 − ε)λ, then∫
M

(|W+| + |W−|)2 ≤ (
∫

M
S 2dµ)(

2
3
−

2(1 + 3ε)
9(1 − ε)

) =
4(1 − 3ε)
9(1 − ε)

∫
M

S 2.

Lemma 3.5.4. Let (M, g, f , λ) be a closed GRS, then∫
M
|Rc|2 =

∫
M

S2

2
− 4λ2V(M).
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Proof. Using equation (3.33), we compute:

2
∫

M
|Rc|2dµ =

∫
M

(2λS + 〈∇ f ,∇S〉)dµ

= 2λ4λV(M) −
∫

M
∆ f Sdµdµ

= 8λ2V(M) −
∫

M
(4λ − S)Sdµ

= −8λ2V(M) +

∫
M

S2dµ.

�

The above results lead to the following estimate on the Euler characteristic.

Proposition 3.5.5. Let (M, g, f , λ) be a closed non-flat GRS with unit volume, satisfy-

ing assumption (3.37), then

8π2χ(M) <
7
12

∫
M

S2dµ + 2λ2(12ε2 − 8ε − 3).

Proof. By the Gauss-Bonnet-Chern formula,

8π2χ(M) =

∫
M

(|W|2 −
1
2
|E|2 +

S2

24
)dµ

≤

∫
M

(|W+| + |W−|)2dµ +
1
2

∫
M
|Rc|2dµ −

∫
M

S2

12
dµ.

Applying Lemmas 3.5.3 and 3.5.4 yields the inequality.

We now claim that the equality case can not happen. Suppose otherwise

then |W+||W−| = 0 and equality also happens in Lemma 3.5.3. By the regularity

theory for solitons [4], we can choose an orientation such that |W−| ≡ 0. Hence

W+ = diag(−a+,−a+, 2a+) with a+ = 2(1 − ε)λ − S
3 , then by [34, Theorem 1.1], we

have W+ = 0 or Rc = 0 .
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In the first case, by the classification of locally conformally flat four-

dimensional closed GRS’s as discussed in Introduction, (M, g) is flat, this is a

contradiction.

In the second case, Rc = 0 implies S = 0 = λ, and since equality happens in

Lemma 3.5.3, W+ = 0. Hence the above argument applies.

�

Remark 3.5.5. The Euler characteristic of a closed Ricci soliton has been studied by

[40]. If the manifold is Einstein and ε = 0, we recover some results of [49].
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CHAPTER 4

PRESERVED CONDITIONS

Here, we investigate preserved conditions along the Ricci flow. Since such a

condition could be passed on to the limit, it is a key ingredient in applications

of the Ricci flow, such as in celebrated works of [51, 81, 10, 13].

Hamilton first observed that a closed manifold with positive Ricci curva-

ture in dimension three and, more generally, a closed manifold with positive

curvature operator remains so along the flow [51, 52]. Then other important

conditions are shown to be preserved along the flow such as two-positive cur-

vature [56, 33] and positive isotropic curvature and its variants [13, 76]. In a

recent development, Wilking [98] proved a theorem giving a simple criterion to

check whether a curvature condition is preserved.

Using his Lie algebra approach, we show another criterion with slightly dif-

ferent flavor (interpolations of cone conditions). The abstract formulation also

recovers some known preserved condition developed in [13].

The organization of this chapter is as follows. Section 4.1 discusses the basic

setting and techniques of the Lie algebra approach by Wilking [98]. In Section

4.2, we prove our main results.

4.1 The Lie Algebra Approach

In this section, we discuss the notation and basic setting of the Lie algebra ap-

proach developed by Wiling [98] and collect some preliminary results.

61



4.1.1 Identification of Vector Spaces and Complexification

A two-form can be seen as an operator on the associated tangent space (Chapter

2). Therefore, the space of two forms Λ2(V) can be identified with the orthogonal

Lie algebra of skew-symmetric real matrices so(n,R). The inner products on

those spaces are, correspondingly,

〈X ∧ Y,U ∧ V〉 = 〈X,U〉 〈Y,V〉 − 〈X,V〉 〈Y,U〉 ,

〈u, v〉 =
1
2

tr(uT v) = −
1
2

tr(uv).

Furthermore, given A, B ∈ S O(n,R), u, v ∈ so(n,R), the adjoint representation of

the Lie group (algebra) is given by conjugation (commutator),

AdAv = AvA−1,

aduv = [u, v] = uv − vu.

Remark 4.1.1. For more background on Lie algbera, see [45].

Next, we complexify the real vector space, VC = V ⊗R C. That is, Z ∈ VC if and

only if Z = X + iY for some X,Y ∈ V . Then Λ2(VC)↔ so(n,C) accordingly.

The inner product on so(n,R) extends to a bilinear form 〈., .〉 on so(n,C). The

inner product (., .) on so(n,C) is defined as

(u, v) = 〈u, v〉 =
1
2

tr(uT , v).

Noted that the bilinear form (but not the inner product) is adjoint-invariant,

〈u, v〉 = 〈AdAu,AdAv〉 ,

(v, v) = 〈v, v〉 = 〈AdAv, AdAv〉 ,
〈
AdAv, AdAv

〉
= (AdAv, AdAv).
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4.1.2 Space of Algebraic Curvature Operators

An algebraic curvature operator R can be seen as a symmetric operator satis-

fying the first Bianchi identity on Λ2(V) and so a map: so(n,R) → so(n,R). We

denote the space of all these maps by S 2
B(Λ2(V))↔ S 2

B(so(n,R)).

Under the complexification procedure, the curvature is an operator on

so(n,C) by linear extension. It is noted that R is a Hermitian operator,

(RA, B) =
〈
RA, B

〉
=

〈
A,RB

〉
= (A,RB) = R(A, B).

Immediately we obtain the following results.

Corollary 4.1.1. The operator −advRadv is Hermitian.

Lemma 4.1.2. If A is a nonnegative Hermitian operator on a finite dimensional vector

space V and B is nonnegative Hermitian operator on the image of A then tr(AB) ≥ 0

Proof. Since A is a nonnegative Hermitian operator, V has an orthonormal basis

consisting of eigenvectors of A. Call them {xi}
n
i=1 with eigenvalues λi ≥ 0. Then

we have tr(BA) = (BAxi, xi) = λi(Bxi, xi) ≥ 0 because, when λi > 0, xi is in the

image of A. �

We also observe the following result.

Lemma 4.1.3. The followings are equivalent:

a. R is a n(n−1)
2 − 1 nonnegative operator on so(n,R)

b. R(v, v) ≤ tr(R) for any unit vector v in so(n,R)

c. R(v, v) = 〈Rv, v〉 = (Rv, v) ≤ tr(R) for any unit vector v in so(n,C)

d. R is a n(n−1)
2 − 1 nonnegative operator on so(n,C)
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Proof. (a⇔ b) and (c⇔ d) are obvious. The only nontriviality part is b⇔ c.

b⇒ c. If v is any unit vector in so(n,C) then there exist x, y ∈ so(n,R)

v =x + iy,

1 =|x|2 + |y|2.

Then, R(v, v) = R(x + iy, x − iy) = R(x, x) + R(y, y) ≤ |x|2tr(R) + |y|2tr(R) = tr(R).

c⇒ b. Let v be any unit vector in so(n,R) then v is also a unit vector in so(n,C)

and the result follows. �

Let F be a closed-convex set in S 2
B(so(n,R)) which is invariant under the nat-

ural action of O(n). The following theorem is essential in the study of preserved

conditions along a Ricci flow. For Q(R), see (3.4).

Theorem 4.1.4. [51] Suppose F is invariant under the Hamilton ODE,

∂

∂t
R = Q(R).

If (M, g(t)), t ∈ [0,T ), is a solution to the Ricci flow such that R(p,0) ∈ F for all points

p ∈ M then R(p,t) ∈ F for all t ∈ [0,T ).

The theorem effectively reduces the study of the PDE system to the study

of the corresponding ODE. Then to check a set is invariant under the ODE, it

suffices to show that if R ∈ ∂F then Q(R) ∈ F.

4.1.3 Basics of Q(R) and R]

Let {φα} be an orthonormal basis of Λ2(V) or, equivalently, so(n,R) and the struc-

ture constants are defined as, cγηα = ([φγ, φη], φα). Notice that the structure con-
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stants are fully skew-symmetric. Equations (3.2), (3.3) become,

R2
αβ =RαγRβγ,

R]
αβ =

1
2

cγηα cδθβ RγδRηθ.

It follows that R2 is just the matrix multiplication. The main difficulty when

studying Q(R), hence, is to understand R]. One important observation is that R]

can be realized as trace of an operator.

Lemma 4.1.5.
〈
R]u, v

〉
= −1

2 tr(aduRadvR).

Proof. Since every operator involved is linear it suffices to show the statement

for u = φ1 and v = φ2. Towards that end, we calculate tr(adφ1Radφ2R). Let M =

adφ1R and N = adφ2R. The matrix of adφi is given by (adφi) jk = ([φi, φ j], φk) = ci j
k ;

therefore,

Mi j = (adφ1)ikRk j = c1i
k Rk j,

N ji = (adφ2) jlRli = c2 j
l Rli.

Then,

tr(MN) =
∑

i, j

Mi jN ji = c1i
k c2 j

l Rk jRli = −cki
1 c jl

2 Rk jRli = −2R]
12.

�

Lemma 4.1.6. Let {φα} be an orthonormal basis diagonalizing R with eigenvalues {λα},

ϕαβ =[φα, φβ],

di
αβ =

〈
[vi, φ

α], φβ
〉
,

for any vector vi. Then we have:

a. R](vi, vi) = 1
2 (di

αβ)
2λαλβ.

b. tr(R]) = 1
2 |ϕαβ|

2λαλβ.
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Proof. a. By Lemma 3.3, 2R](vi, vi) = −tr(adviRadviR). Matrix A of advi with re-

spect to the base {φα}, is given by Mαβ =
〈
[vi, φ

α], φβ
〉

= di
αβ. Also, since di

jk = −di
k j,

the result follows immediately.

b. Now let {vi} be an orthonormal basis of Λ2(V) then by part a,

tr(R]) =
1
2

(
∑

i

(di
αβ)

2)λαλβ.

We also observe, ∑
i

(di
αβ)

2 =
∑

i

〈
adviφ

α, φβ
〉2

=
∑

i

〈
[φk, φ j], vi

〉2
.

As
〈
[φα, φβ], vi

〉
is the magnitude of the projection of ϕαβ on vi and{vi} is an or-

thonormal basis, the right hand side is exactly |ϕαβ|2.

�

Remark 4.1.2. By (3.4), tr(R2 + R]) = 1
2 |Rc|2, thus

|ϕαβ|
2λαλβ = |Rc|2 −

1
2
|R|2 =

1
(n − 1)(n − 2)

S2 +
n − 4
n − 2

|Rc|2 −
1
2
|W|2.

If n = 3, structure constants are 1, |R|2 = 4|Rc|2 − S2. If n = 4, it becomes 1
6S2 − 1

2 |W |
2.

If R is pure, R] can be calculated explicitly.

Lemma 4.1.7. If the curvature operator is pure, then the R] is diagonalized by the same

basis and

R](ei j, ei j) = R(eik, eik)R(e jk, e jk)

Proof. Let ei be a basis that diagonalizes the curvature operator. Note that for

distinct indices i, j, k, l,

[ei j, ekl] = 0,

[ei j, eik] = e jk,〈
ei j, eik

〉
= 0.
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So the only nonzero structure constants are
〈
[ei j, eik], e jk

〉
= 1. Therefore,

R](ei j, ekl) = R](ei j, elk) = 0

R](ei j, ei j) =
1
2

〈
[ekl, emn], ei j

〉2
R(ekl, ekl)R(emn, emn) = R(eik, eik)R(e jk, e jk).

�

When W = 0, the curvature is pure and we obtain the following result.

Corollary 4.1.8. If, along the Ricci flow, W = 0 then positive Ricci curvature is pre-

served.

Proof. Let λi = Rii and λ = 1
n−1Σiλi. By the curvature decomposition, since W = 0,

Ri ji j =
1

n − 2
(λi + λ j − λ).

By the above lemma and equation (3.5),

d
dt
λ1 = Σk,1R1k1kλk

=
1

n − 2
Σk,1λk(λ1 + λk − λ)

=
1

n − 2

(
Σk,1λ

2
k − (λ − λ1)Σk,1λk

)
=

1
n − 2

(
Σk,1λ

2
k −

1
n − 1

(Σk,1λk)2 +
n − 2
n − 1

λ1Σk,1λk

)
Now since Σk,1λ

2
k −

1
n−1 (Σk,1λk)2 ≥ 0, the result follows. �

Before we proceed further, let’s summarize the set up.
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Λ2(V) Λ2(VC) so(n,R) so(n,C)

X ∧ Y linear ext u : Z 7→ 〈Y,Z〉Z − 〈Z,Z〉Y linear ext

〈X ∧ Y,Z ∧W〉 linear ext 〈u, v〉 = 1
2 tr(uT v) = −1

2 tr(uv) conjugation

S 2
B(Λ2(V)) S 2

B(Λ2(VC)) S 2
B(so(n,R)) S 2

B(so(n,C))〈
R]u, v

〉
= −1

2 tr(aduRadvR) linear ext〈
R2u, v

〉
= R(u, φα)R(v, φα) linear ext

4.2 Main Results

First, we recall Wilking’s result and its consequences.

Definition 4.2.1. Let g be a real Lie algebra, so(n,R) or u(n,R), and gC = g ⊗R C,

so(n,C) or u(n,C). For a set S in gC, and a real number h, we define,

C(S, h) = {R ∈ S2
B(gC) | R(v, v) ≥ h,∀v ∈ S}.

Also the Lie group associated with that Lie algebra is denoted GC.

Wilking’s theorem asserts that if S is invariant under the adjoint representa-

tion of GC then C(S, h) is invariant under the ODE R′ = Q(R). That statement

along with Hamilton’s ODE-PDE theorem 4.1.4 capture several preserved con-

ditions along the Ricci flow. For example, setting h = 0 and choosing appropri-

ate set S’s, we recover some well-known results summarized below.
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Conditions Choice of Set

NC S = so(n,C)

2NC S = S2+ = {v ∈ so(n,C), tr(v2) = 0}

NIC S = S0 = {v ∈ so(n,C), rank(v) = 2, v2 = 0}

NIC1 S = S1 = {v ∈ so(n,C), rank(v) = 2, v3 = 0}

NIC2 S = S2 = {v ∈ so(n,C), rank(v) = 2}

Explanation of these conditions, φ, ψ ∈ so(n,R), η, ζ ∈ so(n,C), {ei}
4
i=1 orthonormal:

• NC: Nonnegative curvature, R(φ, φ) ≥ 0.

• 2NC: Two-nonnegative curvature, R(φ, φ)+R(ψ, ψ) ≥ 0, ∀|φ| = |ψ|, 〈φ, ψ〉 = 0.

• NIC: Nonnegative isotropic curvature, R(η, ζ, η, ζ) ≥ 0, for all 〈η, η〉 =

〈η, ζ〉 = 〈η, η〉 = 0, or,

R1313 + R1414 + R2323 + R2424 − 2R1234 ≥ 0.

• NIC1: R(η, ζ, η, ζ) ≥ 0 for all 〈η, η〉 〈ζ, ζ〉 = 〈η, ζ〉2 or

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234 ≥ 0 for all λ ∈ [0, 1].

• NIC2: R(η, ζ, η, ζ) ≥ 0 or

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234 ≥ 0 for all λ, µ ∈ [0, 1].

Remark 4.2.1. By Theorem 4.1.4, a priori requirement for C(S , h) to be invariant under

the Ricci flow is O(n,R)-invariant. But that is equivalent to say that S is invariant un-

der the adjoint representation of O(n,R). Thus, Wilking’s theorem is a partial converse

statement.

Lemma 4.2.2. S 1 = S 2 ∩ S 2+.
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Proof. First, let u ∈ S 2 ∩ S 2+. Since rank(u) = 2 there exist X,Y ∈ VC such that

X ∧ Y ↔ u by the correspondence above.

Claim: For any skew-symmetric matrix of rank 2, u3 = 1
2 tr(u2)u.

To see the claim, we observe,

u(Z) = 〈Y,Z〉 X − 〈X,Z〉Y,

u2Z =(〈Y,Z〉 〈Y, X〉 − 〈X,Z〉 〈Y,Y〉)X − (〈Y,Z〉 〈X, X〉 − 〈X,Z〉 〈X,Y〉)y

u3Z = − ρuZ with ρ = 〈X, X〉 〈Y,Y〉 − 〈X,Y〉2 = 〈X ∧ Y, X ∧ Y〉 = −
1
2

tr(u2).

Thus, if u ∈ S 2 ∩ S 2+, then u3 = 0 and so u ∈ S 1. The converse is similar. �

Remark 4.2.2. C(S α ∪ S β, 0) = C(S α, 0) ∩ C(S β, 0) but C(S α ∩ S β, 0) ) C(S α, 0) ∪

C(S β, 0).

Remark 4.2.3. There have been subsequent works based on Wilking’s criterion to study

the convergence of a Ricci solution [50, 87].

Inspired by Wilking’s theorem, we come up with the following theorem.

Definition 4.2.3. For a set S ⊂ gC and h ∈ R we define,

Ctr(S , h) = {R ∈ S2
B(gC),∀v ∈ S | R(v, v) + h|tr(v2)| ≥ 0}.

Remark 4.2.4. Note that Ctr(S , h) is in general not a cone for h , 0.

Theorem 4.2.4. If S is invariant under the adjoint representation of GC then Ctr(S , h)

is invariant under the ODE, R′ = Q(R)

The following lemma is essential in the proof of the theorem.

Lemma 4.2.5. Let S be an invariant set under the adjoint representation of GC. If

R(v, v)+h|tr(v2)| ≥ 0,∀v ∈ S and R(u, u)+h|tr(u2)| = 0 for some u ∈ S then R](u, u) ≥ 0.
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Proof. We pick an arbitrary v ∈ gC and define

fu(t) = R(Adexp tvu,Adexp tvu) + h|tr((Adexp tvu)2)|.

Since S is invariant under the adjoint representation of GC, Adexp tvu ∈ S and thus

the function fu is nonnegative for all t and zero at t = 0.

Since the adjoint representation is given by AdA(u) = AYA−1,

|tr((Adexp tvu)2)| = |tr(u2)|.

Therefore, differentiating twice with respect to t and evaluating at t = 0 yield,

0 ≤ 2R(advu, advu) + R(advadvu, u) + R(u, advadvu).

Replacing v by iv and summing the 2 inequalities yields, for all X ∈ so(n,C)

0 ≤ R(advu, advu) = R(aduv, aduv).

The last equation implies that −aduRadu and its conjugate −aduRadu are nonneg-

ative on g and R induces a nonnegative operator in the image of adu. By Lemma

4.1.5, 〈
R]u, u

〉
= −

1
2

tr(aduRaduR).

Thus, the statement follows from Lemma 4.1.2. �

Proof. (Theorem 4.2.4). Since trace is invariant under the adjoint representation,

Ctr(S , h) is convex and O(n, ,R)-invariant. Furthermore as |c2| = |c|2 the set is

scaling-invariant. Then, by Theorem 4.1.4 and the fact that R2 is weakly positive

definite, the statement follows from Lemma 4.2.5. �

Remark 4.2.5. The complex set up allows the interchange of v and iv. That manipula-

tion is powerful because we can compare algebraically the curvature operator acting on

perpendicular elements.
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It is interesting to observe some relations between new invariant sets and

Wilking’s original sets.

Proposition 4.2.6. If S be invariant under the adjoint representation of GC then

a. C(S, 0) = ∩h>0Ctr(S, h).

b. Ctr(S, 1
2 ) ⊂ {R ∈ S2

B(so(n,C)),R + Id ∈ C(S, 0)}.

c. C(S ∩ S2+, 0) = ∪h>0Ctr(S, h).

To prove Prop 4.2.6, first, we need the following lemma.

Lemma 4.2.7. For v ∈ gC, 1
2 |tr(v2)| ≤ |v|2.

Proof. If v ∈ gC, it can be written as v = φ + iψ, φ, ψ ∈ g. Then we have,

|v|2 = 〈v, v〉 = |φ|2 + |ψ|2.

Furthermore, using the Cauchy-Schwarz inequality for the inner product on g,

|
1
2

tr(v2)|2 =| 〈v, v〉 |2 = ||φ|2 − |ψ|2 + 2i 〈φ, ψ〉 |2

=|φ|4 + |ψ|4 − 2|φ|2|ψ|2 + 4 〈φ, ψ〉2

≤|φ|4 + |ψ|4 + 2|φ|2|ψ|2 = (|φ|2 + |ψ|2)2 = |v|4

Thus, 1
2 |tr(v2)| ≤ |v|2. �

Proof. (Prop. 4.2.6) Without loss of generality, we can assume that S is closed

and scaling invariant.

a. Obviously if, ∀v ∈ S, R(v, v) ≥ 0, then for h > 0, R(v, v) + h|tr(v2)| ≥ 0. Thus,

C(S) ⊂ Ctr(S, h) for each h > 0.

For the other direction, we observe that if R ∈ ∩h>0Ctr(S, h) then for each v ∈ S,

R(v, v) ≥ −h|tr(v2)| for all h > 0. Letting h → 0+ we have R(v, v) ≥ 0. Then the
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result follows.

b. If R ∈ Ctr(S, 1
2 ) then for all v ∈ S , by Lemma 4.2.7,

0 ≤ R(v, v) +
1
2
|tr(v2)| ≤ R(v, v) + |v|2 = R(v, v) + Id(v, v).

Therefore, R + Id ∈ C(S, 0).

c. Let R ∈ Ctr(S, h) then, for any v ∈ S ∩ S2+ tr(v2) = 0, R(v, v) ≥ 0. Thus, Ctr(S, h) ⊂

C(S ∩ S2+).

For the other direction, we proceed by contradiction. Let R ∈ C(S ∩ S2+) and

suppose that R < Ctr(S, h) for any h > 0. That is, we can find sequences h j → +∞,

v j ∈ S such that R(v j, v j) + h j|tr(v2
j)| < 0. Since the inequality is scaling invariant

we can assume that |v j| = 1. Then, by compactness, we can obtain a subsequence

hi → +∞ and vi → v such that

R(vi, vi) + hi|tr(v2
i )| < 0. (4.1)

If |tr(v2)| , 0 then the second term of (4.1) approaches positive infinity and,

thus, we obtain a contradiction as R(vi, vi) → R(v, v) < ∞. If |tr(v2)| = 0 then

v ∈ S ∩ S 2+. Since R ∈ C(S ∩ S2+), R(v, v) ≥ 0. But that is also a contradiction with

(4.1).Therefore, R ∈ Ctr(S , h) for some h > 0. �

Also, by choosing S = S2, h = 1
2 we recover the following result which plays

a role in the proof of the differentiable sphere theorem [13].

Corollary 4.2.8. Let C be the set of algebraic curvatures such that, for {ei}
4
i=1 orthonor-

mal, λ, µ ∈ [0, 1],

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234 + (1 − λ2)(1 − µ2) ≥ 0.

Then C is invariant under the Hamilton ODE.
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Proof. We observe that if z = e1 + iµe2 and w = e3 + iλe4 then,

R(z,w, z,w) =R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234,

−
1
2

tr((z ∧ w)2) = 〈z ∧ w, z ∧ w〉 = 1 + λ2µ2 − λ2 − µ2.

Then by the correspondence between so(n,C) and Λ2(V ⊗R C) (see [11, Appendix

B]), the statement follows. �
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CHAPTER 5

HARNACK ESTIMATES

In this chapter, we show Harnack estimates on a closed manifold Mn+p with

warped product symmetry along the Ricci flow. Given (F p, gF) Ricci flat and

(Nn, gN) a closed Riemannian manifold, let Mn+p = Nn × F p with the warped

product metric 1:

gM = gN + f 2gF = gN + e2ugF , (5.1)

which evolves under the Ricci flow

∂

∂t
gM = −2RcM. (5.2)

The Ricci flow on a warped product has been investigated by several authors

such as Cao [22], Lott-Sesum [69]. Harnack inequalities have a long history with

fundamental contribution by, for example, Li-Yau [66] on parabolic equations.

For the Ricci flow, key results were proved by Hamilton [54] and Perelman [81].

Our main theorem gives estimates for a fundamental solution to the adapted

conjugate heat equation. The inequality is structurally similar to Perelman’s but

for a slightly more general setting.

Before proceeding further, let’s fix the notation. We will use AX to denote a

quantity with respect to metric gX on manifold X. We’ll also omit the subscript

when it is clear that the calculation is carried on N. Also if the flow exists for

0 ≤ t ≤ T , it is convenient to define τ = T − t. The conjugate heat operator

with respect to the Ricci flow on M is �∗M = ∂τ − ∆M + SM. For the warped

product setting, the adapted operator on N is given by, for Sw = SN − p|∇u|2,

�∗w = ∂τ − 4N + Sw.
1The warped structure can also be defined more generally as in Section 2.6 but that one is

not preserved by the Ricci flow in general.
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The rest of this chapter is organized as follows. In section 2, we discuss the

adaptation of the Ricci flow for a warped product and an equivalent system

obtained via diffeomorphisms. In section 3, we derive modified monotonicity

formulas and functionals. In section 4, we prove several gradient estimates with

respect to the equivalent system. Section 5 collects some applications.

5.1 Basics of Ricci Flow on Warped Products

Let (M, gM) be a warped product as in (5.1) then, by Section 2.6, for a function h,

HessMh = [Hessh]N ⊕ [ f 〈∇h,∇ f 〉N gF]F (5.3)

= [Hessh]N ⊕ [e2u 〈∇h,∇u〉N gF]F ,

4Mh = ∆Nh + p 〈∇u,∇h〉N = ∆Nh +
p
f
〈∇ f ,∇h〉N , (5.4)

dµM = dµN f pdµF = dµNepudµF , (5.5)

RcM = [Rc −
p
f

Hess( f )]N ⊕ [−( f4 f + (p − 1)|∇ f |2)gF]F (5.6)

= [Rc − pHess(u) − pdu ⊗ du]N ⊕ [−e2u(∆u + p|∇u|2)gF]F ,

SM = S − 2p
4 f
f
− p(p − 1)

|∇ f |2

f 2 (5.7)

= S − 2p∆u − p(p + 1)|∇u|2.

Lemma 5.1.1. Let (M, gM(t)), 0 ≤ t ≤ T , be a solution to the Ricci flow and gM(0) is a

warped product metric as in (5.1). The flow preserves that warped structure and can be

considered as a flow on (N, g(t)):

∂

∂t
g = −2Rc + 2p

Hess f
f

= −2Rc + 2pHessu + 2pdu ⊗ du, (5.8)

∂

∂t
f = 4 f + (p − 1)

|∇ f |2

f
∂

∂t
u = 4u + p|∇u|2 = ∆Mu.
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Proof. Suppose (gN , f ) evolves as above then we can check that gM evolves by the

Ricci flow. By the uniqueness theorem for Ricci flow [51, Section 5], the result

follows. �

Since u satisfies the heat equation, the maximum principle applies that if

u(., 0) ≤ C then u(., t) ≤ C as long as the flow exists. Furthermore, extensive use

of the maximum principle yields interior estimates.

Lemma 5.1.2. Let (M, gM(t)), 0 ≤ t ≤ T , be a solution to the Ricci flow and gM(0)

is a warped product metric as in (5.1). Then for each α > 0, there exists a constant

C(m, n, α) such that if

|Rm|M(., t) < k for all t ∈ [0,
α

k
]

then

|∇mu|g(t) ≤
C|u(., 0)|L∞

tm/2

for all t ∈ [0, αk ].

Proof. Since ∂
∂t u = 4gM u and |u(., 0)|L∞ is preserved, the method of Shi’s estimates

applies. For a detailed calculation, see lemma 3.6 of [11]. �

Remark 5.1.1. The essence of this lemma is that the constant only depends on degree

and dimension. Therefore, under suitable dilation limit analysis, it holds for any small

compact interval under a uniform curvature bound.

5.1.1 Transform by Diffeomorphisms

Here, we discuss the procedure of transforming the flow system on N by a fam-

ily of diffeomorphisms and collect some useful evolution equations. Most of the

calculation here are similar to that of [67] or [73].
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We consider diffeomorphisms generated by −p∇u, ∂
∂tϕ(t)(x) = (−p∇u)(ϕ(t)(x)).

Pullbacks g̃(t) = ϕ∗(t)(g(t)), ũ(t) =
√

pϕ∗(t)(u(t)) =
√

pu(t) ◦ ϕ(t) yield

∂

∂t
g̃(t) = L−p∇u(ϕ∗(t)(g(t))) + ϕ∗(t)(

∂

∂t
g(t))

= ϕ∗(t)(
∂

∂t
g(t) + L−p∇ug(t)) = ϕ∗(t)(−2Rc + 2pdu ⊗ du)

= −2R̃c + 2dũ ⊗ ũ,

∂

∂t
ũ(t) =

√
pL−p∇u(ϕ∗(t)(u(t))) +

√
pϕ∗(t)(

∂

∂t
u(t))

=
√

pϕ∗(t)(
∂

∂t
u(t) + L−p∇uu(t)) =

√
pϕ∗(t)(4u) = 4ũ.

So (5.8) is transformed into the following system on N (we abuse notation here

as tildes are removed):

S = Rc − du ⊗ du

∂g
∂t

= −2Rc + 2du ⊗ du = −2S (5.9)

∂u
∂t

= 4u.

Remark 5.1.2. Thus, results in [69] extend to a slightly more general setting: the fiber

can be any Ricci flat manifold instead of S 1.

Then the Christoffel symbols evolve by

∂

∂t
Γk

i j = −gkl(∇iS jl + ∇ jSil − ∇lSi j)

= gkl(−∇iRc jl − ∇ jRcil + ∇lRci j + 2∇i∇ ju∂lu).

Lemma 5.1.3. If (N, u(., t), g(t)) is a solution to (5.9) then the Laplacian acting on func-

tion evolves by

∂

∂t
∆ = 2Si j · ∇i∇ j − 2∆u 〈∇u,∇(.)〉 (5.10)

78



Proof. We compute

∂

∂t
∆ =

∂

∂t
(gi j∇i∇ j) =

∂

∂t
(gi j(∂i∂ j − Γk

i j∂k))

= (−
∂

∂t
gi j)∇i∇ j − gi j(

∂

∂t
Γk

i j)∂k.

Using the evolution equation for Γk
i j yields

gi j(
∂

∂t
Γk

i j)∂k = gkl(−2gi j∇iRc jl + ∇lR) + 2gkl∆u∂lu∂k

= 2∆u 〈∇u,∇(.)〉 ,

where we use the contracted 2nd Bianchi identity. The result follows. �

Now we derive evolution equations for some geometrical quantities. Recall

Sw = tr(S) = R − |∇u|2 and we compute:

∂

∂t
|∇u|2 =

∂

∂t
(gi j∇iu∇ ju) = 2S(∇u,∇u) + 2

〈
∇u,∇

∂

∂t
u
〉
,

= 2Rc(∇u,∇u) − 2|∇u|4 + 2 〈∇u,∇4u〉 ,

∆|∇u|2 = 2
〈
∇u,∇

∂

∂t
u
〉

+ 2Rc(∇u,∇u) + 2|Hessu|2 (Bochner’s formula).

Combining equations above yields

�|∇u|2 = −2|Hessu|2 − 2|∇u|4. (5.11)

By Section 2.4 ∂
∂t g = v then ∂

∂t R = −4trace(v) + div(divv) − (v,Rc). Here,

div(div2Rc) = ∇i2∇ jRci j = ∇i∇iS = ∆S,

div(divdu ⊗ du) = ∇i(∇ j(∇iu∇ ju)) =
1
2
4|∇u|2 + 〈∇u,∇4u〉 + |∆u|2,

∂

∂t
S = −∆(−2Sw) − ∆S + ∆|∇u|2 + 2 〈∇u,∇∆u〉

+ 2|∆u|2 + 2|Rc|2 − 2Rc(∇u,∇u)

= ∆Sw + 2 〈∇u,∇∆u〉 + 2|∆u|2 + 2|Rc|2 − 2Rc(∇u,∇u).
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Combining equations above yields

∂

∂t
Sw = ∆S + 2|∆u|2 + 2|Si j|

2. (5.12)

Remark 5.1.3. [67] considers a similar system with a constant αn associated with the

term du ⊗ du. However, in case αn ≥ 0 letting ũ =
√
αnu recovers (5.9). So every result

in section 4 holds for αn ≥ 0 as well.

Remark 5.1.4. A generalization of that system is so-called the Ricci-Harmonic flow

first introduced by R. Muller in [73] and it is interesting to extend the result here for

that setting (see, [9]).

5.2 Monotonicity Formulae

We shall derive the adapted and modified forms of monotonicity formulas and

associated functionals to the warped product setting. First, to adapt these for-

mulas (see Section 3.4) to our setting, we observe the following relations.

Lemma 5.2.1. a. If H = e−h and H = Hepu = e−h then

h = h − pu,

ht = |∇h|2 − 4Mh − RM iff

ht = −S − 4Nh + ∇h(∇h + p∇u).

b. If H = (4πτ)−(n+p)/2e−h and H = Hepu = (4πτ)−n/2e−h then

h = h − pu +
p
2

ln(4πτ) and

ht = |∇h|2 − 4Mh − RM +
n + p

2τ
iff

ht = −S − 4Nh + ∇h(∇h + p∇u) +
n
2τ
.
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Proof. a. Using (5.4) and (5.7), we compute

ht = |∇h|2 − 4Mh − RM

= |∇h|2 − 4Nh − p∇h∇u − RN + 2p4Nu + p(p + 1)|∇u|2,

ht = ht − put

= |∇h|2 − 4Nh − p∇h∇u − RN + 2p4Nu + p(p + 1)|∇u|2

− p4Nu − p2|∇u|2

= −4Nh − RN + p|∇u|2 + ∇(h + pu)∇h.

b. This follows from a similar computation. �

Lemma 5.2.2. Adapted to the Ricci flow on warped product metric given in (5.1) , the

monotonicity formulas on (N, g(t)) are given by:

a. F (g, u, h) =
∫

N
(Sw + |∇h|2)e−hdµ restricted to

∫
N

e−hdµ = 1
V(F) .

Furthermore if ht = −Sw − ∆h + ∇h(∇h + p∇u) then

d
dt
F = 2

∫
N

(
|S + Hess(h)|2 + p|∆u − ∇u∇h|2

)
e−hdµ.

a’. W.r.t system (5.9), ht = −Sw − ∆h + |∇h|2.

b. Restricted to
∫

N
Hdµ =

∫
N

(4πτ)−n/2e−hdµ = 1
V(F) ,

Ψ(g, u, τ, h) =

∫
N

[
τ(|∇h|2 + Sw) + (h + pu − n − p) −

p
2

ln(4πτ)
]
HdµN .

And if ht = −Sw − ∆h + ∇h(∇h + p∇u) + n
2τ then

d
dt

Ψ = 2τ
∫

N
(|S + Hessh −

g
2τ
|2 + p|∆u − ∇u∇h +

1
2τ
|2)(4πτ)−n/2e−hdµ.

b’. W.r.t system (5.9), ht = −S − 4h + |∇h|2 + n
2τ .
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Proof. a. We will use formulas (5.7), (5.4), (5.5) to compute:

F (gM, h) =

∫
M

(SM + |∇h|2)e−hdµM

=

∫
N

∫
F
(SN − 2p∆u − p(p + 1)|∇u|2 + |∇h|2)e−hepudµNdµF

= V(F)
∫

N
(S − p|∇u|2 + |∇h|2)e−hdµ,

where we use integration by parts (IBP) to simplify∫
N

2p∆ue−hdµ =

∫
N

2p∇h∇ue−hdµ.

Furthermore, using (5.3) and (5.6), we calculate

ht = |∇h|2 − ∆Mh − SM, then

d
dt
F = 2

∫
M

(|RcM + HessMh|2dµM

= 2V(F)
∫

N

(∣∣∣∣Rc − pdu ⊗ du − pHess(u) + Hess(h + pu)
∣∣∣∣2

+ p
∣∣∣∣ − 4Nu − p|∇u|2 + ∇u∇(h + pu)

∣∣∣∣2)dµ
= 2V(F)

∫
N

(|Rc − pdu ⊗ du + Hessh|2 + p|4u − ∇u∇h|2)e−hdµ.

The result then follows from lemma 5.2.1.

a’. It follows from L−p∇uh = −p∇u∇h.

b. and b’. are similar using part b) of lemma 5.2.1. �

Corollary 5.2.3. For (N, g(t)) along (5.9), if

Ψw(g, u, τ, h) =

∫
N

(
τ(|∇h|2 + Sw) + (h − n)

)
(4πτ)−n/2e−hdµN

ht = −Sw − ∆h + ∇h(∇h + p∇u) +
n
2τ
,

then,

d
dt

Ψw = 2τ
∫

N
(|S + Hessh −

g
2τ
|2 + p|4u − ∇u∇h|2)(4πτ)−n/2e−hdµN .
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Proof. We have

Ψw = Ψ +

∫
N

(p − u +
p
2

ln(4πτ))HepudµN .

Since u satisfies the heat equation on M and H the conjugate, d
dt

∫
M

uHdµM = 0.

Thus,

d
dt

Ψw =
d
dt

Ψ +
p
2

( d
dt

ln(4πτ)
) ∫

N
HepudµN

=
d
dt

Ψ −
p

2τ

∫
N

HepudµN .

On the other hand,

|∆u − ∇u∇h +
1
2τ
|2 = |∆u − ∇u∇h|2 +

1
4τ2 +

1
τ

(∆u − ∇u∇h),∫
N
4ue−hdµN =

∫
N
∇u∇he−hdµN by Stoke’s theorem.

The result follows. �

An immediate application from the above calculation is the following result.

Proposition 5.2.4. Let (M, gM) be a closed warped product given as in (5.1). If M is a

gradient soliton and the soliton function is constant on each fiber then (N, gN) is Ricci

flat and f is a constant function.

Proof. Suppose (M, g) is a gradient soliton satisfying

RcM + HessMh = λgM,

with h constant on each fiber. Let h = h + pu and follow the calculation from

previous lemmas, we obtain:

0 =

∫
M
|RcM + HessMh − λgM |

2e−hdµM =

∫
M
|S + HessNh − λgN |

2e−hdµM

+ V(F)
∫

N
p|∆Nu − ∇u∇h + λ|2dµN .
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On the other hand,

|∆Nu − ∇u∇h + λ|2 = |∆Nu − ∇u∇h|2 + λ2 + 2λ(∆Nu − ∇u∇h),∫
N

∆Nue−hdµN =

∫
N
∇u∇he−hdµN by Stoke’s theorem.

Thus λ = 0 and (N × F, gN + f 2gF) is a gradient steady soliton. As N × F is

closed, by either theorem 2.4 of [81] or 20.1 of [56], the manifold is Ricci flat.

That is

0 = f ∆N f + (p − 1)|∇ f |2 = ∆Nu + p|∇u|2,

0 = RcN − p
HessN( f )

f
.

However, as
∫

N
∆NudµN = 0, the first equality implies that ∇u = 0 and so f must

be constant. Plugging into the 2nd equality yields the result. �

Remark 5.2.1. Also computation above shows that monotone functionals in [67] are

just suitable modification of ones developed by Perelman for warped products. For com-

pleteness, we’ll repeat the definition here.

Definition 5.2.5. Along the flow given by (5.8) or (5.9), restricted to
∫

N
e−hdµN = 1,

Fw(g, u, h) =

∫
N

(Sw + |∇h|2)e−hdµN . (5.13)

Restricted to
∫

N
(4πτ)−n/2e−hdµN = 1,

Ψw(g, u, τ, h) =

∫
N

(
τ(|∇h|2 + Sw) + (h − n)

)
(4πτ)−n/2e−hdµN . (5.14)

Furthermore, associated functionals can be defined similarly as follows:

µw(g, u, τ) = inf
h

Ψw(g, u, h, τ), (5.15)

υw(g, u) = inf
τ>0

µw(g, u, τ), (5.16)

λw(g, u) = inf
h
Fw(g, u, h) ≥ λ(gM). (5.17)
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Remark 5.2.2. These functionals satisfy diffeomorphism and scaling invariance:

Ψw(g, u, τ, h) = Ψw(cg, u, cτ, h),

µw(g, u, τ) = µw(cg, u, cτ),

υw(g, u) = υw(cg, u).

Also the reduced geometry can be motivationally defined in an analogous

manner (see also [72]).

Definition 5.2.6. We define the Lw-length of a curve γ : [τ0, τ1] 7→ N, [τ0, τ1] ⊂ [0,T ]

by

Lw(γ) :=
∫ τ1

τ0

√
τ(Sw(γ(τ)) + |γ̇(τ)|2)dτ.

For a fixed point y ∈ N and τ0 = 0, the backward reduced distance is defined as

`w(x, τ1) := inf
γ∈Γ
{

1
2τ1
Lw(γ)}, (5.18)

where Γ = {γ : [0, τ1] 7→ M, γ(0) = y, γ(τ1) = x}.

The backward reduced volume is

Vw(τ) :=
∫

M
(4πτ)−n/2e−`w(y,τ)dµτ(y).

Remark 5.2.3. The functionals here differ from ones for the Ricci flow by replacing S

with Sw. So it is natural that these new quantities behave similarly. First, we collect

some lemmas.

Lemma 5.2.7. For any metric g, smooth function u on closed N anf τ > 0,

a. There exists a smooth minimizer fτ for Ψw(g, u, ., τ) which satisfies

τ(2∆ fτ − |∇ fτ|2 + Sw) + fτ − n = µw(g, u, τ).

b. µw(g, u, τ) is finite.

c. Along the flow, 0 ≤ t1 ≤ t2 ≤ T and τ(t) > 0, d
dtτ = −1 then

µw(g(t2), τ(t2)) ≥ µw(g(t1), τ(t1)).
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d. limτ→0+ µw(g, u, τ) = 0.

Proof. The arguments are identical to the counterpart for the Ricci flow, such as

[37, Chapter 6] and [36, chapter 17]. Also details for the Ricci-Harmonic map

flow which our setting is a special case of are given in [73, Section 7]. The proof

of part d is verbatim to that of [91, Prop 3.2], replacing S by Sw.

�

Remark 5.2.4. It is interesting to note that the functional µw can be defined without

the flow context but the proof of d use some monotonicity formula of the flow.

Lemma 5.2.8. Assume as above and λw(g, u) > 0 then limτ→∞ µw(g, u, τ) = +∞. Thus,

υ(g, u) is well-defined and finite.

Proof. The argument is verbatim to [37, Lemma 6.30] replacing S by Sw. �

An immediate application of the monotone framework is the theorem below

which resembles a result of P. Topping in [94] using scalar curvature to control

diameter for a compact manifold along the Ricci flow. The proof is verbatim by

replacing monotonicity formulas µ and υ by µw and υw with required features

described in Lemmas 5.2.7 and 5.2.8.

Theorem 5.2.9. Let n ≥ 3 and (Nn, g(t), u(., t)) be a solution to (5.8) with υw(g, u) ≥ −∞

then there exists a C depending on n, υw(g, u) such that

diam(N, g) ≤ C
∫

N
(Sw)(n−1)/2

+ dµN = C
∫

N
(S − p|∇u|2)(n−1)/2

+ dµN .

Remark 5.2.5. The + subscript denotes the positive part and C = max{ 12
ωn
, 6e3n37−υw(g,u)}.
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Corollary 5.2.10. Let n ≥ 3 and Let (M, gM(t)), 0 ≤ t ≤ T , be a solution to the Ricci flow

and gM(0) is a warped product metric as in (5.1). Furthermore assume that λw(g(0)) > 0

then there exists C1,C2 depending on the initial conditions such that

diam(M, g) ≤ C1 + C2

∫
N

(S − p|∇u|2)(n−1)/2
+ dµN .

Proof. Since the flow preserves the warped product setting, (F, gF) is closed,

|u(., t)|L∞ ≤ |u(., 0)|L∞ , the result follows from triangle inequalities and theorem

5.2.9. �

Remark 5.2.6. Applying Topping result directly yields the bound C
∫

N
(S−2p∆u−p(p+

1)|∇u|2)(n+p−1)/2epudµN . Thus, the above corollary gives a better estimate.

5.3 Gradient Estimates and Harnack Inequality

For this section, we restric ourselves to system (5.9) and prove gradient esti-

mates and a differential Harnack inequality for solutions to the conjugate heat

equation. This section might be of independent interest and some arguments

here are similar to those in [78].

Recall �∗w = − ∂
∂t−∆+Sw is the adapted conjugate operator. Following standard

theory on heat equations, for example [36, Chapter 23, 24], we denote:

H(x, t; y,T ) = (4π(T − t))−n/2e−h = (4πτ)−n/2e−h,

for τ = T−t > 0, to be the heat kernel. That is, for fixed (x, t), H is the fundamental

solution of equation �H = 0 based at (x, t), and similarly for fixed (y,T ) and

equation �∗wH = 0. The ultimate goal is to prove the following theorem.
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Theorem 5.3.1. Let (N, u(., t), g(t)), 0 ≤ t ≤ T , be a solution to (5.9). Fix (y,T ), let

H = (4πτ)−n/2e−h be the fundamental solution of �∗wH = 0, and

v =
(
(T − t)(2∆h − |∇h|2 + Sw) + h − n

)
H,

then for all t < T , we have

v ≤ 0.

First let us recall the asymptotic behavior of the heat kernel as t → T .

Theorem 5.3.2. [36, Theorem 24.21] For τ = T − t,

H(x, t; y,T ) ∼
e−

d2
T (x,y)

4τ

(4πτ)n/2 Σ∞j=0τ
ju j(x, y, τ).

More precisely, there exist t0 > 0 and a sequence u j ∈ C∞(M × M × [0, t0]) such that,

H(x, t; y,T ) −
e−

d2
T (x,y)

4τ

(4πτ)n/2 Σk
j=0τ

ju j(x, y,T − l) = wk(x, y, τ),

with

u0(x, x, 0) = 1,

and

wk(x, y, τ) = O(τk+1− n
2 )

as τ→ 0 uniformly for all x, y ∈ M.

Next we derive a general estimate on the kernel. The proof is inspired by

[29].

Lemma 5.3.3. Let B = − inf0<τ≤T µw(g(0), τ)( B is well-defined due to Lemma 5.2.8)

and D = min{0, infN×{0} Sw}, then we have

H(x, t, y,T ) ≤ eB−(T−t)D/3(4π(T − t))−n/2.
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Proof. Without loss of generality, we may assume that t = 0. Let Φ(y, t) be any

positive solution to the heat equation along the flow. First, we obtain an upper

bound for the L∞-norm of Φ(.,T ) in terms of L1-norm of Φ(., 0).

Set p(l) = T
T−l = T

τ
then p(0) = 1 and liml→T p(l) = ∞. For A =

√∫
N

Φpdµ, v =

A−1Φp/2 and ∇Φ∇(v2Φ−1) = (p − 1)p−24|∇v|2, integration by parts (IBP) yields

∂t(ln ||Φ||Lp) = −p′p−2 ln(
∫

N
Φpdµ) + (p

∫
N

Φpdµ)−1∂t(
∫

N
Φpdµ)

= −p′p−2 ln(
∫

N
Φpdµ) + (p

∫
N

Φpdµ)−1
( ∫

N
Φp(pΦ−1Φ′ + p′ ln Φ − Sw)dµ

)
= −p′p−2 ln(A2) + p−1A−2

( ∫
N

A2v2(pΦ−1Φ′ + p′
2
p

ln (Av) − Sw)dµ
)

=

∫
N

v2Φ−14Φdµ + p′p−2
∫

v2 ln v2 − p−1
∫

N
Swv2dµ

= p′p−2
∫

N
v2 ln v2dµ − (p − 1)p−2

∫
N

4|∇v|2dµ − p−1
∫

N
Swv2dµ

= p′p−2
( ∫

N
v2 ln v2dµ −

p − 1
p′

∫
N

4|∇v|2dµ −
p − 1

p′

∫
N

Swv2dν
)

+ ((p − 1)p−2 − p−1)
∫

N
Swv2dµ.

Note that if we set v2 = (4πτ)−n/2e−h then the first term becomes,

−p′p−2Ψw(g, u,
p − 1

p′
, h) − n −

n
2

ln(4π
p − 1

p′
).

We have

p′p−2 =
1
T
,

p − 1
p′

=
l(T − l)

T
, and (p − 1)p−2 − p−1 = −

(T − l)2

T 2 .

For 0 < t0 < T , τ(t0) =
t0(T−t0)

T and d
dtτ = −1 then 0 < τ(0) =

t0(2T−t0)
T < T . By Lemma

5.2.7, we arrive at

−p′p−2Ψw(g(l), u,
p − 1

p′
, h) ≤ −

1
T

Ψw(g(0), u, τ(0), h) ≤ −
1
T

inf
0<τ≤T

µw(g(0), τ) =
B
T
.

Thus

T∂t(ln |Φ||Lp) ≤ B − n −
n
2

ln (4π
t(T − t)

T
) −

(T − t)2

T
D,
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since, by (5.12), the minimum of Sw is nondecreasing along the flow. Integrating

the above inequality yields

T ln
||Φ(.,T )||L∞
||Φ(., 0)||L1

≤ T (B − n −
n
2

(ln (4πT ) − 2)) −
T 2

3
D.

Then

||Φ(.,T )||L∞ ≤ eB−T D/3(4πT )−n/2||Φ(., 0)||L1 .

Since

Φ(y,T ) =

∫
N

H(x, 0, y,T )Φ(x, 0)dµg(0)(x), (5.19)

and the above inequality holds for any arbitrary positive heat equation, we ob-

tain

H(x, 0, y,T ) ≤ eB−T D/3(4πT )−n/2.

�

Lemma 5.3.4. Assume there exist k1, k2, k3 ≥ 0 such that, on N × [0,T ],

Rc(g(t)) ≥ −k1g(t),

max{Sw, |∇Sw|
2} ≤ k2,

|∇u|2 ≤ k3.

Let q be any positive solution to the equation �∗wq = 0 on N×[0,T ] and τ = T−t. If q < A

hen there exist C1,C2 depending on k1, k2, k3 and n such that for 0 < τ ≤ min{1,T, 1
2k2
},

we have

τ
|∇q|2

q2 ≤ (1 + C1τ)(ln
A
q

+ C2τ). (5.20)
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Proof. We compute

(−∂t − 4)
|∇q|2

q
= S
|∇q|2

q
+

1
q

(−∂t − 4)|∇q|2 + 2|∇q|2∇
1
q
∇ln q − 2∇|∇q|2∇

1
q
,

1
q

(−∂t − 4)|∇q|2 =
1
q

[
− 2S(∇q,∇q) − 2Rc(∇q,∇q) − 2∇q∇(S q) − 2|∇2q|2

]
,

2|∇q|2∇
1
q
∇ln q = −2

|∇q|4

q3 ,

−2∇|∇q|2∇
1
q

= 4
∇2q(∇q,∇q)

q2 .

Thus

(−∂t − 4)
|∇q|2

q
=
−2
q
|∇2q −

dq ⊗ dq
q
|2 +
−4Rc(∇q,∇q) + 2(∇u∇q)2 − 2∇q∇(Swq)

q
+ Sw

|∇q|2

q

≤ [(4 + n)k1 + 3k3 + 1]
|∇q|2

q
+ k2q.

Furthermore, we have

(−∂t − 4)(q ln
A
q

) = −Swq ln
A
q

+ Swq +
|∇q|2

q

≥
|∇q|2

q
− (nk1 + k3)q − k2q ln

A
q
.

Let Φ = a(τ) |∇q|2

q − b(τ)q ln A
q − cq, and we can choose a,b,c appropriately such that

(−∂t − 4)Φ ≤ 0. For example,

a =
τ

1 + [(4 + n)k1 + 3k3 + 1]τ
,

b = ek2τ,

c = (ek2τ(nk1 + k3) + k2)τ.

Then by the maximum principle, noticing that Φ ≤ 0 at τ = 0,

a
|∇q|2

q
≤ b(τ)q ln

A
q

+ cq.

The result then follows from simple algebra.

�
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The next result, mainly from [72], relates the reduced distance defined in

(5.18) with the regular distance at time T.

Lemma 5.3.5. Let Lw(x, τ) = 4τ`w(x, τ) then we have.

a. Assume that there exists k1, k2 ≥ 0 such that −k1g(t) ≤ S(t) ≤ k2g(t) for t ∈ [0,T ]

then Lw is smooth amost everywhere and a local Lipschitz function on N × [0,T ]. Fur-

thermore,

e−2k1τd2
T (x, y) −

4k1n
3

τ2 ≤ Lw(x, τ) ≤ e2k2τd2
T (x, y) +

4k2n
3

τ2.

b. �∗w
(

e−
Lw(x,τ)

4τ

(4πτ)n/2

)
≤ 0.

c. H(x, t; y,T ) = (4πτ)−n/2e−h then h(x, t; y,T ) ≤ `w(x,T − t) .

Proof. a. This follows from the result [72, Lemma 4.1] for general flows.

b. This follows from [72, Lemma 5.15]. The key assumption is the non-

negativity of the quantity,

D(S, X) = ∂tSw − ∆Sw − 2|S|2 + 4(∇iSi j)X j − 2(∇ jS )X j + 2(Rc − S)(X, X).

In our case, applying (5.12) and the second Bianchi identity yields

D(S, X) = 2(∆u)2 + 4∇i(Ri j − uiu j)X j − 2∇ j(S − |∇u|2)X j + 2du ⊗ du(X, X)

= 2(∆u)2 − 4∆u 〈∇u, X〉 + 2 〈∇u, X〉2 = 2(∆u − 〈∇u, X〉)2 ≥ 0.

c. We first observe that part a) implies limτ→0 Lw(x, τ) = d2
T (y, x) and, hence,

lim
τ→0

e−
Lw(x,τ)

4τ

(4πτ)n/2 = δy(x),

since locally Riemannian manifolds look like Euclidean. It follows immediately

from part b) and the maximum principle that,

H(x, t; y,T ) ≥
e−

Lw(x,τ)
4τ

(4πτ)n/2 =
e−

Lw(x,T−t)
4τ

(4π(T − t))n/2 .
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Hence we have,

h(x, t; y,T ) ≤
Lw(x, τ)

4τ
= `w(x, τ) = `w(x,T − l).

�

A direct consequence is the following estimate on the heat kernel.

Lemma 5.3.6. We have
∫

N
hHΦdµN ≤

n
2Φ(y,T ), i.e,

∫
N

(h − n
2 )HΦdµN ≤ 0.

Proof. By lemma 5.3.5 we have

lim sup
τ→0

∫
N

hHΦdµN ≤ lim sup
τ→0

∫
N
`w(x, τ)HΦdµN(x)

≤ lim sup
τ→0

∫
N

d2
T (x, y)

4τ
HΦdµN(x).

Using Lemma 5.3.2,

lim
τ→0

∫
N

d2
T (x, y)

4τ
HΦdµN(x) = lim

τ→0

∫
N

d2
T (x, y)

4τ
e−

d2
T (x,y)

4τ

(4πτ)n/2 ΦdµN(x).

Either by differentiating twice under the integral sign or using these following

identities on Euclidean spaces∫ ∞

−∞

e−ax2
dx =

√
π

a
and

∫ ∞

−∞

x2e−ax2
dx =

1
2a

√
π

a
,

we obtain ∫
Rn
|x|2e−a|x|2dx = n(

∫ ∞

−∞

x2e−ax2
dx)

( ∫ ∞

−∞

e−ax2
dx

)n−1
=

n
2a

(
π

a
)n/2.

Therefore,

lim
τ→0

d2
T (x, y)

4τ
e−

d2
T (x,y)

4τ

(4πτ)n/2 =
n
2
δy(x)

and so

lim
τ→0

∫
N

d2
T (x, y)

4τ
e−

d2
T (x,y)

4τ

(4πτ)n/2 ΦdµN(x) =
n
2

Φ(y,T ).

Thus the result follows. �
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Remark 5.3.1. In fact, the equality actually holds (See the proof of Theorem 5.4.2).

Proposition 5.3.7. Let v =
(
(T − t)(2∆h − |∇h|2 + Sw) + h − n

)
H then

a. �∗wv = −2(T − t)
(
|S + Hessh − g

2τ |
2 + |∆u − ∇u∇h|2

)
H ≤ 0;

b. If ρΦ(t) =
∫

N
vΦdµN , then limt→T ρΦ(t) = 0.

Proof. a. Let q = 2∆h − |∇h|2 + Sw then

H−1�∗wv = −(∂t + ∆)(τq + h) − 2
〈
∇(τq + h),H−1∇H

〉
= q − τ(∂t + ∆)q − (∂t + ∆)h + 2τ 〈∇q,∇h〉 + 2|∇h|2.

As H satisfies �∗wH = 0, (∂t + ∆)h = −Sw + |∇h|2 + n
2τ . We compute

(∂t + ∆)∆h = ∆
∂h
∂t

+ 2 〈S,Hess(h)〉 − 2∆u 〈∇u,∇h〉 + ∆(∆h)

= ∆(−∆h + |∇h|2 − Sw +
n
2τ

+ ∆(∆h)

+ 2 〈S,Hess(h)〉 − 2∆u 〈∇u,∇h〉

= ∆(|∇h|2 − Sw) + 2 〈S,Hess(h)〉 − 2∆u 〈∇u,∇h〉 ,

where we use Lemma 5.1.3.

(∂t + ∆)|∇h|2 =2S(∇h,∇h) + 2
〈
∇h,∇

∂h
∂t

〉
+ ∆|∇h|2

=2
〈
∇h,∇(−4h + |∇h|2 − Sw)

〉
+ 2S(∇h,∇h) + ∆|∇h|2.

Recall from (5.12), (∂t + ∆)Sw = 2∆Sw + 2|S|2 + 2|∆u|2, and

2S(∇h,∇h) = 2Rc(∇h,∇h) − 2du ⊗ du(∇h,∇h) = 2Rc(∇h,∇h) − 2 〈∇u,∇h〉2

∆|∇h|2 = 2Hess(h)2 + 2 〈∇h,∇∆h〉 + 2Rc(∇h,∇h),
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where the second equation is by Bochner’s identity. Combining those above

yields,

(∂t + ∆)q =4 〈S,Hess(h)〉 − 4∆u 〈∇u,∇h〉 + ∆|∇h|2

− 2S(∇h,∇h) − 2
〈
∇h,∇(−4h + |∇h|2 − Sw)

〉
+ 2|S|2 + 2|∆u|2

=4 〈S,Hess(h)〉 − 4∆u 〈∇u,∇h〉 + 2 〈∇h,∇q〉 + 2Hess(h)2

+ 2|S|2 + 2|∆u|2 + 2 〈∇u,∇h〉2

=2|S + Hess(h)|2 + 2|∆u − 〈∇u,∇h〉 |2 + 2 〈∇h,∇q〉 .

Thus,

H−1�∗wv = q + Sw − |∇h|2 −
n
2τ

+ 2|∇h|2

− 2τ(|S + Hess(h)|2 + 2|∆u − 〈∇u,∇h〉 |2)

= −2τ
(
|S + Hess(h) −

g
2τ
|2 + |4u − ∇u∇h|2

)
.

The result follows.

b. IBP yields

ρΦ(t) =

∫
N

(
τ(2∆h − |∇h|2 + Sw) + h − n

)
HΦdµN

= −

∫
N

2τ∇h∇(HΦ)dµN −

∫
N
τ|∇h|2HΦdµN +

∫
N

(τSw + h − n)HΦdµN

=

∫
N
τ|∇h|2HΦdµN − 2τ

∫
N
∇Φ∇hHdµN +

∫
N

(τSw + h − n)HΦdµN

=

∫
N
τ|∇h|2HΦdµN − 2τ

∫
N

H4ΦdµN +

∫
N

(τSw + h − n)HΦdµN

=

∫
N
τ|∇h|2HΦdµN +

∫
N

hHΦdµN − 2τ
∫

N
H4ΦdµN +

∫
N

(τSw − n)HΦdµN .

For the first term, using Lemmas 5.3.3 and 5.3.4 for N × [ τ2 , τ] to arrive at

τ

∫
N
|∇h|2HΦdµN ≤ (2 + C1τ)

∫
N

(ln (
C3e−Dτ/3

H(4πτ)n/2 ) + C2τ)HΦdµN

≤ (2 + C1τ)
∫

N
(ln C3 −

Dτ
3

+ h + C2τ)HΦdµN ,
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with C1,C2 as in Lemma 5.3.4 while C3 = eB

2n/2 .

Therefore, applying Lemma 5.3.6,

lim
τ→0

(
∫

N
τ|∇h|2dµN +

∫
N

hHΦdµN) ≤ 3
∫

N
hHΦdµN + 2 ln C3Φ(x,T )

≤ (
3n
2

+ 2 ln C3)Φ(x,T ).

Now we observe that expect for the first 2 terms, the rest approaches −nΦ(y,T )

as τ→ 0. Thus

lim
t→T

ρΦ(t) ≤ C4Φ(x,T ).

Furthermore, since Φ is a positive test function satisfying the heat equation

∂tΦ = 4Φ, hence,

∂tρΦ(t) = ∂t

∫
N

vΦdµN =

∫
N

(�Φv − Φ�∗wv)dµN ≥ 0. (5.21)

The above conditions imply that there exists α such that

lim
t→T

ρΦ(t) = α.

Hence limτ→0(ρΦ(T − τ) − ρΦ(T − τ
2 )) = 0. By equation (5.21), part a), and the

mean-value theorem, there exists a sequence τi → 0 such that

lim
τi→0

τ2
i

∫
N

(
|S + Hessh −

g
2τ
|2 + |∆u − ∇u∇h|2

)
HΦdµN = 0.

Now using standard inequalitites yield,

(
∫

N
τi(Sw + 4h −

n
2τi

)HΦdµN)2

≤ (
∫

N
τ2

i (Sw + 4h −
n

2τi
)2HΦdµN)(

∫
N

HΦdµN)

≤ (
∫

N
τ2

i |S + Hessh −
g
2τ
|2HΦdµN)(

∫
N

HΦdµN).

Since limτi→0

∫
N

HΦdµN = Φ(y,T ) < ∞ and |4u − ∇u∇h|2 ≥ 0,

lim
τi→0

∫
N
τi(Sw + 4h −

n
2τi

)HΦdµN = 0.
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Therefore, by Lemma 5.3.6,

lim
t→T

ρΦ(t) = lim
t→T

∫
N

(τi(24h − |∇h|2 + Sw) + h − n)HΦdµN

= lim
t→T

∫
N

(τi(4h − |∇h|2) + h −
n
2

)HΦdµN

= lim
t→T

(
∫

N
(−τiH4ΦdµN +

∫
N

(h −
n
2

)HΦdµN)

=

∫
N

(h −
n
2

)HΦdµN ≤ 0.

So α ≤ 0. To show that equality holds, we proceed by contradiction. Without

loss of generality, we may assume Φ(y,T ) = 1. Let HΦ = (4πτ)−n/2eh̃ (that is,

h̃ = h − ln Φ), then IBP yields,

ρΦ(t) = Ψw(g, u, τ, h̃) +

∫
N

(
τ(
|∇Φ|2

Φ
) − Φ ln Φ

)
HdµN . (5.22)

By the choice of Φ the last term converges to 0 as τ→ 0. So if limt→T ρΦ(t) = α < 0

then limτ→0 µw(g, u, τ) < 0 and, thus, contradictss Lemma 5.2.8. Therefore α = 0.

The result then follows. �

Now Theorem 5.3.1 follows immediately.

Proof. (Theorem 5.3.1) Recall from inequality (5.21)

∂t

∫
N

vΦdµN =

∫
N

(v�Φ − Φ�∗wv)dµN ≥ 0.

By Proposition 5.3.7, limt→T

∫
N

vΦdµN = 0. Since Φ is arbitrary, v ≤ 0. �

5.4 Applications

In this section, we collect some applications of the estimates proved in the pre-

vious sections.
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An immediate consequence is the following LYH-type Harnack estimate.

Corollary 5.4.1. Let (N, g(t)), 0 ≤ t ≤ T , τ = T − t, be a solution to (5.9), along any

smooth curve γ(t) in N, we have

−∂th(γ(t), t) ≤
1
2

(Sw(γ(t), t) + |γ̇(t)|2) −
1

2(T − t)
h(γ(t), t),

∂τ(2
√
τh) ≤

√
τ(Sw + |γ̇(t)|2).

Proof. As H satisfies �∗wH = 0,

ht = −Sw − ∆h + |∇h|2 +
n
2τ
.

Substituting that into ∂th(γ(t), t) = ∇hγ̇(t) + ht ≥ ht −
1
2 (|∇h|2 + |γ̇(t)|2) and applying

v ≤ 0 prove the result. �

The next theorem exposes relations between fundamental solutions and the

reduced distance defined with respect to the same reference point (y,T ).

Theorem 5.4.2. Let (N, g(t)), 0 ≤ t ≤ T , τ = T − t, be a solution to (5.9). Let H =

(4πτ)−n/2e−h be a positive fundamental solution of �∗wH = 0 centered at (y,T ). If Φ is a

positive solution to the heat equation ∂tΦ = 4MΦ, then the following hold:

a. h(x, l; y, t) ≤ `w(x,T − l),

b. limτ→0 4τ`w(x, τ) = d2
T (y, x),

c. limτ→0

∫
N

hHΦdµN = limτ→0

∫
N
`w(x, τ)HΦdµN = n

2Φ(y,T ).

Proof. Part a) and b) are proved in Lemma 5.3.5. Part c) follows from Lemma

5.3.6 and the proof of Lemma 5.3.7, where it is shown that equality must hold.

�

Remark 5.4.1. If H satisfies (5.25), then H = He−u satisfies the conjugate heat equation

on (M, gM). However, H is not fundamental because it blows up on the whole fiber over

98



(y,T ). That partially explains the following result which is interesting because if H̃

were a fundamental solution then the limit would be zero.

Corollary 5.4.3. Let Ψ be Perelamn’s Ψ-functional (3.25) and H as above. Let

H̃ =
1

V(F)
H = (4πτ)−(n+p)/2e−h̃, (5.23)

for V(F) denotes the volume of (F, gF). Then limτ→0 Ψ(gM, τ, h̃) = ∞.

Proof. We abuse notation here by writing,

Ψ(gM, τ, h) =

∫
M

(
τ(|∇h|2 + SM) + h − n − p

)
(4πτ)−(n+1)/2e−hdµM,

for
∫

M
HdµM = V(F).

Let Φ = 1 be the constant function in Prop. 5.3.7 then ρ1(t) = Ψw(g, u, τ, h).

By Lemmas 5.2.1 and 5.2.2,

Ψ(gM, τ, h) = V(F)
∫

N

(
τ(Sw + |∇h|2) + h − n − p + pu −

p
2

ln(4πτ))HdµN

= V(F)Ψw(g, u, τ, h) + pV(F)
∫

N
(u − 1 −

1
2

ln(4πτ))HdµN .

Since limτ→0 ln(4πτ) = −∞, by Lemma 5.3.7, limτ→0 Ψ(gM, τ, h) = +∞. A direct

calculation yields that,

Ψ(gM, τ, h̃) =
1

V(F)
Ψ(gM, τ, h) + ln(V(F)). (5.24)

Thus the result follows. �

Finally, we state the Harnack inequality translated to the warped product.

Theorem 5.4.4. Let (M, gM(t)), 0 ≤ t ≤ T , τ = T − t, be a solution to the Ricci flow and

gM(0) a warped product metric as in (5.1). Let H be a positive, fiber-constant function

on M such that, on N, H = Heu = (4πτ)−n/2e−h is the fundamental solution of

�∗wH + p∇u∇H = 0 (5.25)
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centered at (y,T ). If v =
(
τ(2∆h − |∇h|2 + Sw) + h − n

)
H, then, for all 0 < τ ≤ T , v ≤ 0.

Proof. By the diffeomorphism discussed in Section 2, the result follow from The-

orem 5.3.1. Note that if, with respect to (5.9), Φ (H) is a positive function satisfy-

ing the equation ∂tΦ = 4NΦ (�∗wH = 0) then pulling back by the diffeomorphism,

with respect to (5.8),

∂tΦ = ∆NΦ + p∇u∇Φ = 4gM Φ,

∂tH = −4N H + S − wH + p∇u∇H.

�
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CHAPTER 6

CONDITIONS TO EXTEND THE RICCI FLOW

This chapter describes a joint work with X. Cao [27] examining conditions

related to the first finite singularity time. In particular, we provide a systematic

approach to the mean value inequality method, suggested by N. Le [63] and F.

He [59]. We also display a close connection between this method and time slice

analysis as in [97].

It was first shown by Hamilton that |R| must blow up approaching the first

finite singular time (Theorem 3.1.1). More recently, by using an application of

the non-collapsing result of Perelman (Section 3.4), Sesum was able to prove that

if |Rc| is bounded then the flow can be extended [90]. Since then, the obvious

generalized question of whether the scalar curvature must behave similarly has

received extensive attention. It is still open but considerable progress has been

made: the Type I case is resolved by J. Ender, R. Muller and P. Topping [42],

also independently by Q. Zhang and the X. Cao in [30, 24], while the Kähler

case is solved by Z. Zhang [102]. There are various other relevant results such

as estimates relating the scalar curvature and the Weyl tensor [24], compara-

ble growth rates of different components of the curvature tensor [97], [96], and

integral conditions by Le and Sesum [64].

It is interesting that elementary but clever analytical techniques proved fruit-

ful to study this problem. Following the mean value inequality trick of Le [63]

for the mean curvature flow, F. He developed a logarithmic-improvement con-

dition for the Ricci flow [59]. Our contribution is to provide a more systematic

treatment of the mean value inequality method and to find a close connection

to the time slice analysis method suggested by B. Wang [97]. Then we apply our
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analysis to a particular context of Ricci flow with a uniform-growth condition

defined below.

For the rest of this chapter, we will use the following notation:

Q(t) = sup
M×{t}
|R|, P(t) = sup

M×{t}
|Rc|, O(t) = sup

M×{t}
|S|.

Our first theorem gives a logarithmic-improvement condition relating the Ricci

curvature and the Riemannian curvature tensor (in comparison, the logarithmic

result in [59] involves a double integral of just the Riemannian curvature).

Theorem 6.0.5. Let (M, g(t)), t ∈ [0,T ), be a Ricci flow solution on M. If for some

0 ≤ p ≤ 1, we have ∫ T

0

P(t)
(ln(1 + Q(t)))p dt < ∞,

then the solution can be extended past time T.

Since we are interested in the behavior of the scalar curvature at a singular

time, this motivates the following definition.

Definition 6.0.6. A Ricci flow solution on a closed manifold is said to satisfy the

uniform-growth condition if it develops a singularity in finite time, and any singular-

ity model obtained by parabolic rescaling at the scale of the maximum curvature tensor

must has non-flat scalar curvature.

Under the Ricci flow, the uniform-growth condition generalizes both Type

I and (non-flat) nonnegative isotropic curvature (NIC) conditions. Combining

the above mean value inequality method with the uniform-growth condition

yields the following logarithmic-improvement result.
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Theorem 6.0.7. Let (M, g(t)), t ∈ [0,T ), be a Ricci flow solution satisfying the uniform-

growth condition on M. If for some 0 ≤ p ≤ 1, we have∫ T

0

∫
M

|S|n/2+1

(ln (1 + |S|))p dµdt < ∞, (6.1)

then the solution can be extended past time T.

The organization is as follows. In Section 2, we recover a result of [59] by

elementary continuity analysis. Section 3 discuss mean value inequalities and

provide the proof of Theorem 6.0.5. Section 4 displays a close connection to the

time-slice analysis and thus gives another proof of the above result as well as

some independent estimates. In Section 5 we apply our method to the context

of nonnegative isotropic curvature and its generalization.

6.1 Continuity Analysis

This section is to prove the following result:

Theorem 6.1.1. Let (M, g(t)), 0 ≤ t < T < ∞ be a solution to the Ricci flow. If

F(x) =
∫ T

0
|Rc|(x, t)dt is continuous on M then the solution can be extended past time T.

Remark 6.1.1. The result is also proved in [59] using the Sobolev machinery.

Let Hx(t1, t2) =
∫ t2

t1
|Rc|(x, t)dt. H is uniformly continuous if for any ε > 0, there

exists δ > 0 such that if |t2 − t1| < δ then Hx(t1, t2) < ε, ∀x ∈ M.

Lemma 6.1.2. H is uniformly continuous under one of those assumptions:

a.
∫ T

0
P(t)dt < C.

b. F(x) =
∫ T

0
|Rc|(x, t)dt is continuous on M
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Proof. a. Since
∫ T

0
P(t)dt is finite, we can choose η such that H(t,T ) < ε for all

η ≤ t. If η ≤ t1 ≤ t2 ≤ T then obviously, H(t1, t2) < ε. Let c = max[0, T+η
2 ] |P(t)| and

choose δ < min{ η2 ,
ε
c } then the result follows.

b. Let F (x, t) =
∫ t

0
|Rc|(x, t)dt. By the assumption and M is closed and T finite,

F is uniformly continuous on M × [0,T ]. The argument carries over. �

Remark 6.1.2. Is it possible to replace
∫ T

0
P(t)dt by

∫ T

0
|Rc(t)|dt at any point in M?

Lemma 6.1.3. Let (M, g(t)), 0 ≤ t < T < ∞ be a solution to the Ricci flow. If H is

uniformly continuous then g(t) is uniformly continuous.

Proof. For any x ∈ M and any V ∈ TxM we have:

| ln
g(x, t2)(V,V)
g(x, t1)(V,V)

| = |

∫ t2

t1

∂tg(x, t)(V,V)
g(x, t)(V,V)

| ≤ 2
∫ t2

t1
|Rc|(x, t) = Hx(t1, t2).

�

We are ready to prove the main theorem.

Proof. (of Theorem 6.1.1) The proof is modeled after that of [38, Theorem 6.40].

By Lemmas 6.1.2 and 6.1.3, the metric is uniformly continuous. Thus the same

argument as in the aforementioned reference would apply if we can show that

the singularity model is Ricci flat.

If T is the singular time then by Theorem 3.1.1, there exist a sequence t j → T ,

Q j = maxM |R(x, t j)| → ∞. We dilate the solution by g j(t) = Q jg(t j + t
Q j

). Then

|Rc| j(x, t) = 1
Q j
|Rc|(x, t j + t

Q j
) and therefore,∫ 0

−1
|Rc j|(x, t)dt =

∫ t j

t j−
1

Q j

|Rc|(x, s)
Q j

Q jds

=

∫ t j

t j−
1

Q j

|Rc|(x, s)ds
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Since Q j → ∞, t j−
1

Q j
→ T . As in Lemma 6.1.2, F (x, t) =

∫ t

0
|Rc|(x, t)dt is uniformly

continuous on M × [0,T ]. Therefore, the last integral above is approaching zero

as j → ∞. By the convergence theory (see 3.3.14),
∫ 0

−1
|Rc|∞(x, t)dt = 0 and the

solution is Ricci flat. The result then follows. �

Remark 6.1.3. Let (S n, g0) be the space form of constant sectional curvature 1. The

Ricci flow has the solution g(t) = (1 − 2(n − 1)t)g(0) with T = 1
2(n−1) is the first singular

time. The family g(t) is not uniformly continuous because

|g(t1) − g(t0)|g(t0) = 2(n − 1)|t1 − t0||g(0)|g(t0) =
2(n − 1)|t1 − t0|

1 − 2(n − 1)t0
|g(0)|g(0).

6.2 Mean Value Inequalities

In this section, we describe the method of mean value inequalities to study con-

ditions to extend the Ricci flow. The key idea is to generalize a simple but clever

trick from [63] which involves an integral with a carefully chosen weight func-

tion. The conclusion is that, regarding the blow-up behavior, the weight func-

tion does not really matter.

Lemma 6.2.1. Let f ,G : [0,T ) → [0,∞) be continuous functions and ψ : [0,∞) →

[0,∞) be a non-decreasing function such that∫ ∞

1

1
ψ(s)

ds = ∞. (6.2)

If there is a mean value inequality of the form

f (t) ≤ C1

∫ t

0
ψ( f (s))G(s)ds + C2 = h(t) (6.3)

and
∫ T

0
G(t)dt < ∞, then lim supt→T f (t) < ∞.
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Proof. For any T0 < T ,∫ T0

0
C1G(t)dt =

∫ T0

0

1
ψ( f (t))

C1ψ( f (t))G(t)dt

=

∫ h(T0)

h(0)

1
ψ( f (h−1(s)))

ds (let s = h(t), ds = h′(t)dt)

≥

∫ h(T0)

h(0)

1
ψ(s)

ds.

The last inequality is because of f (t) ≤ h(t). If
∫ T

0
C1G(t)dt < ∞, then by the choice

of ψ, h(T0) ≤ C < ∞. Now by the mean value inequality, f (T0) ≤ h(T0) ≤ C. Since

T0 is arbitrary, sup[0,T ) f ≤ C < ∞. �

Next, we will establish a mean value inequality connecting Q(t) and P(t).

Lemma 6.2.2. Let Σ(M, κ,C0) = {g(t)|t ∈ [0, 1], g(t) is κ-noncollapsed, Q(0) ≤ C0} be a

set of complete Ricci flow solutions on Mn. Then there exists a constant C = C(n, κ,C0)

such that for any g(t) ∈ Σ,

sup
[0,1]

Q(t) ≤ C
∫ 1

0
Q(t)P(t)dt + 32C0. (6.4)

Proof. The proof is by contradiction. Suppose that the statement is false then

there exists a sequence of gi(t) ∈ Σ and ai → ∞ such that

sup
[0,1]

Qi(t) ≥ ai

∫ 1

0
Qi(t)Pi(t)dt + 32C0.

Let Qi = sup[0,1] Qi(t) then we can find (xi, ti) such that Qi is attained. Since

Qi > 32C0 there exists ti0 being the first time backward such that Qi(ti0) = 1
2 Qi.

Consequently, for t ∈ [ti0, ti], 32C0 < Qi < 2Qi(t), Qi(ti0) > 16C0 and by Lemma

3.1.2, ti0 >
1

16C0
.

Claim: There exists a constant ε0 = ε0(n, κ) such that the following holds: for

any t0 > 0, D ≥ max{1/t0,max[0,t0] Q}, let t1 > t0 be the first time, if exists, such that
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Q(t1) = D, and t2 > t1 be the first time, if exists, such that | ln(Q(t2)/Q(t1))| = ln 2,

then ∫ t2

t1
P(t)dt > ε0.

Proof of claim: This is essentially just a restatement of [97, Lemma 3.2]. If there

are no such t1, t2, the statement is vacuously true. If they exist then we dilate the

solution by g̃(t) = Dg(t1 + t/D) then g̃(t) satisfies the condition of the aforemen-

tioned result and the claim follows after rescaling back.

Applying the claim above yields∫ ti

ti0
Pi(t)dt > ε0. (6.5)

Thus,

Qi ≥ 32C0 + ai

∫ ti

ti0
Qi(t)Pi(t)dt ≥ 32C0 + ai16C0ε0. (6.6)

On the other hand,

Qi

∫ ti

ti0
Pi(t)dt ≤ 2

∫ ti

ti0
Qi(t)Pi(t)dt

≤ 2
∫ 1

0
Qi(t)Pi(t)dt

≤ 2
Qi − 32C0

ai
,

hence ∫ ti

ti0
Pi(t)dt ≤

2
ai

Qi − 32C0

Qi
→ 0,

the last limit follows from (6.6) and ai → ∞. This is in contradiction with (6.5),

so the lemma follows. �

We are now in the position to state our mean value inequality.
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Proposition 6.2.3. Let (M, g(t)), 0 ≤ t < T , be a Ricci flow solution. There exist:

C0 = C0(n, κ,Q(0)),

C1 = 32Q(0),

such that,

sup
[0,t]

Q ≤ C0

∫ t

0
Q(u)P(u)du + C1. (6.7)

Proof. For t ∈ [0, 1
16Q(0) ) the statement is true by Lemma 3.1.2. For any t ∈

[ 1
16Q(0) ,T ) define

g̃(s) =
1
t
g(ts), s ∈ [0, 1],

Q̃(s) = tQ(s).

Since the non-collapsing constant is a scaling invariant, Lemma 6.2.2 yields

sup
[0,1]

Q̃ ≤ C0

∫ 1

0
Q̃(s)P̃(s)ds + 32Q̃(0),

sup
[0,t]

tQ ≤ C0t
∫ t

0
Q(u)P(u)du + 32tQ(0) (u = ts),

sup
[0,t]

Q ≤ C0

∫ t

0
Q(u)P(u)du + 32Q(0).

�

Now we can finish the proof of Theorem 6.0.5.

Proof. (Theorem 6.0.5) First observe that if T is the first singular time then

lim
t→T

Q(t) = ∞

by Theorem 3.1.1. Now applying Lemma 6.2.1 with the function ψ(s) = s ln(1 +

s)p, 0 ≤ p ≤ 1 (it is easy to check that it is nondecreasing and
∫ ∞

1
1
ψ(s)ds = ∞) and

Proposition 6.2.3 yields the result. �
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6.3 Time Slice Approach

In the last section, the essential ingredient to obtain the mean value inequality

relating Q(t) and P(t) is the estimate in Lemma 6.2.2. That result points out that,

when the curvature doubles, the integral of the maximum of the Ricci tensor

norm is bounded below by a universal constant. It turns out that using the time

slice analysis, we can deduce similar results in a slightly different manner. To

be more precise, the logarithmic quantity and ln(
∫ T

0
P(t)dt) blow up together at

the first singular time. We shall also derive some other results which might be

of independent interest.

For a Ricci flow solution developing a finite time singularity, let si be the first

time such that Q(si) = 2i+4Q(0). Then by Lemma 3.1.2,

si+1 ≥ si +
1

16Q(si)
= si +

1
8Q(si+1)

. (6.8)

Lemma 6.3.1. Let (M, g(t)), t ∈ [0,T ), be a maximal κ-noncollapsed Ricci flow solution

on M . Then

sup
[0,t]

Q(s) ≤ 2
1
ε0

∫ t
0 P(s)ds+116Q(0), (6.9)

where ε0 is the constant from the claim of Lemma 6.2.2.

Proof. The result can be deduced directly from [97, Theorem 3.1]. For complete-

ness, we provide a proof here. From the claim in Lemma 6.2.2, we have∫ si+1

si

P(t)dt ≥ ε0.

Let N be the largest interger such that sN ≤ t then

Nε0 ≤

∫ sN

s0

P(s)ds ≤
∫ t

0
P(s)ds,
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hence

N ≤
1
ε0

∫ t

0
P(s)ds.

Thus it follows that

sup
[0,t]

Q(s) ≤ 2N+116Q(0) ≤ 2
1
ε0

∫ t
0 P(s)ds+116Q(0).

�

Next we derive a mean value type inequality using the time slice argument.

Theorem 6.3.2. Let (M, g(t)), t ∈ [0,T ), be a maximal κ-noncollapsed Ricci flow solu-

tion on M. Furthermore, let

G(u) = ln(16Q(0)) + 2 ln 2 +
ln 2
ε0

∫ u

0
P(s)ds.

Then for 0 ≤ p ≤ 1, we have

ln(G(t)) ≤ C1

∫ t

0

P(s)
(ln(1 + Q(s)))p ds + C2, (6.10)

where C1 > 0 only depends on ε0, C2 > 0 depends on ε0 and Q(0).

Proof. First, without loss of generality, let Q = sup[0,t] Q(s) > 2 and observe that

for 0 ≤ p ≤ 1,

(ln(1 + Q(s)))p ≤ ln(1 + Q(s)) ≤ ln(1 + Q).

Applying Lemma 6.3.1,

1 + Q ≤ 2
1
ε0

∫ t
0 P(s)ds+216Q(0),

ln(1 + Q) ≤ ln(16Q(0)) + 2 ln 2 +
ln 2
ε0

∫ t

0
P(s)ds.

Since G(u) = ln(16Q(0)) + 2 ln 2 + ln 2
∫ u

0
P(s)ds, we have

G′(s) =
ln 2
ε0

P(s) > 0,
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and

G(s) ≥ (ln(1 + Q(s)))p.

Therefore,

ln 2
ε0

∫ t

0

P(s)
(ln(1 + Q(s)))p ds ≥

∫ t

0

G′(s)
G(s)

ds

= ln G(t) − ln G(0).

The statement now follows immediately. �

Remark 6.3.1. Theorem 6.0.5 now follows from Theorem 6.3.2 and the fact that∫ T

0
P(s)ds needs to blow up at the first singular time T [97].

Next we apply the same method to a slightly different setting.

Lemma 6.3.3. Let (M, g(t)), t ∈ [0,T ), be a maximal κ-noncollapsed Ricci flow solution

on M. Then there exists a constant C = C(Q(0), κ), such that

Q(si+1) ≤ C
∫ si+1

si

∫
M
|R|

n
2 +2dµg(s)ds, (6.11)

and thus
1
C
≤

∫ si+1

si

∫
M
|R|

n
2 +1dµg(s)ds. (6.12)

Proof. Suppose that the statement is false then as j→ ∞, there exist si j → T and

a j → ∞, such that

a j

∫ si j+1

si j

∫
M
|R|n/2+2dµg(s)ds ≤ Q(si j+1).

Therefore, we can choose a blow-up sequence (x j, si j+1) and rescale (see Section

3.3 to obtain a singularity model (M∞, g∞(s), x∞) with |R∞(x∞, 0)| = 1.
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On the other hand, due to (6.8),∫ 0

−1/8

∫
M
|R(g j(t))|

n
2 +2dµg j(t)dt =

1
Q(si j+1)

∫ si j+1

si j+1−
1

8Q(si j+1)

∫
M
|R(g(s)|

n
2 +2dµg(s)ds

≤
1

Q(si j+1)

∫ si j+1

si j

∫
M
|R(g(s)|

n
2 +2dµg(s)ds

≤
1
a j
→ 0.

Hence, the limit solution is flat, a contradiction. The second statement follows

from the first immediately. �

Note that Lemma 6.3.3 involves a time slice estimate similar in the spirit of

the claim in Lemma 6.2.2 and, thus, applying the same method as before yields

the following results. The proofs are omitted as they are almost identical to

those of Lemma 6.3.1 and Theorem 6.3.2.

Proposition 6.3.4. Let (M, g(t)), t ∈ [0,T ), be a maximal κ-noncollapsed Ricci flow

solution on M. Then

sup
[0,t]

Q(s) ≤ 2C
∫ t

0

∫
M |R|

n
2 +1dµg(s)ds+116Q(0). (6.13)

Theorem 6.3.5. Let (M, g(t)), t ∈ [0,T ), be a maximal κ-noncollapsed Ricci flow solu-

tion on M. Let

G(u) = ln(16Q(0)) + 2 ln 2 + C ln 2
∫ u

0

∫
M
|R|

n
2 +1dµg(s)ds.

Then for 0 ≤ p ≤ 1, we have

ln(G(t)) ≤ C1

∫ t

0

∫
M

|R|
n
2 +1

(ln(1 + R))p dµg(s)ds + C2, (6.14)

where C1 > 0 and C2 only depend on κ and Q(0).

Remark 6.3.2. It is shown in [96] that the function G(t) must blow up as t approaches

the first singular time. Therefore, Theorem 6.3.5 implies [59, Theorem 1.6].
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6.4 Nonnegative Isotropic Curvature Condition

The notion of nonnegative isotropic curvature (NIC) was first introduced by M.

Micallef and J. D. Moore in [70]. A Riemannian manifold M of dimension n ≥ 4

is said to have nonnegative isotropic curvature if for every orthonormal 4-frame

{e1, e2, e3, e4}, that

R1313 + R1414 + R2323 + R2424 − 2R1234 ≥ 0.

The positive condition is defined similarly by replacing the above with a strict

inequality. The isotropic curvature is also related to complex sectional curva-

tures described as follows. For each p ∈ M, let TC
p M = TpM ⊗R C, then the

Riemannian metric g extends naturally to a complex bilinear form

g : TC
p M × TC

p M → C,

and so is the Riemannian curvature tensor R to a complex multilinear form

R : TC
p M × TC

p M × TC
p M × TC

p M → C.

Then M has NIC if and only if,

R(θ, η, θ, η) ≥ 0

for all (complex) vectors θ, η satisfying g(θ, θ) = g(η, η) = g(θ, η) = 0 (such a

plane spanned by θ and η is called an isotropic plane, for more details, see [11]).

Furthermore, this NIC condition is implied by several other commonly used

curvature conditions, such as nonnegative curvature operator or point-wise 1
4 -

pinched sectional curvature conditions, and it implies nonnegative scalar cur-

vature. For more details, see [70] or [11].
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Another interesting and relevant fact is that this condition is preserved along

the Ricci flow. In dimension 4, it was proved by Hamilton [57]; higher di-

mension analog was extended by S. Brendle and R. Schoen [13] and also by

H. Nguyen [76] independently. Using minimal surface technique, Micallef and

Moore [70] showed that any compact, simply connected manifold with posi-

tive isotropic curvature is homeomorphic to S n. By utilizing the Ricci flow and

the aforementioned perseverance, Brendle and Schoen further proved the Dif-

ferentiable Sphere theorem, which has been a long time conjecture since the

(topological) 1
4 -pinched Sphere theorem was proved by M. Berger [5] and W.

Klingenberg [61] around 60’s. More precisely, Brendle and Schoen showed that

any compact Riemannian manifold with point-wise 1
4 -pinched sectional curva-

ture is diffeomorphic to a spherical space form [13].

In this section, we apply our analysis to the context of non-flat manifolds

with NIC or, slightly more generally, satisfying the uniform-growth assump-

tion as in Definition 6.0.6. Let’s first recall the definition of flag curvature and

Berger’s Lemma.

Definition 6.4.1. Given a unit vector e, the flag curvature on the direction e is a sym-

metric bilinear form on Ve = e⊥ (the perpendicular compliment of e in V = Rn) given by

Re(X, X) = R(e, X, e, X) for any X ∈ Ve.

We further define ρe = sup|X|=|Y |=1,<X,Y>=0 (Re(X, X) − Re(Y,Y)) and ρ = supe ρe.

Remark 6.4.1. It is clear that ρ is no more than the difference between the maximum

and minimum of sectional curvatures at each point.

Lemma 6.4.2 (Berger [6]). For orthonormal vectors U, V, X, W in TpM, we have

a) |R(U,V,U,W)| ≤ 1
2ρU ,

b) |R(U,V, X,W)| ≤ 1
6ρU+X + 1

6ρU−X + 1
6ρU+W + 1

6ρU−W ≤
2
3ρ.
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It is well-known [70, 71, 80] that in dimension four, NIC is equivalent to the

non-negativity of the Weitzenböck operator as in Subsection 2.3.3. The follow-

ing result is well-known, for example, see [89] or [11, Prop. 7.3]. We’ll provide

a proof for completeness.

Lemma 6.4.3. Let (Mn, g), n > 4, be a Riemannian manifold with NIC then |R| ≤ c(n)S.

Proof. We have

Rikik + Rilil + R jk jk + R jl jl ≥ 0,

Rii + R j j ≥ 2Ri ji j,

(n − 4)Rii + S ≥ 0.

Thus,

Rii ≥ −
S

n − 4
,

Rii = S − Σ j,iR j j ≤ S + (n − 1)
S

n − 4
= c1S,

Ri ji j ≤
1
2

(Rii + R j j) ≤ c1S,

Ri ji j ≥ −3c1S,

Now by Lemma 6.4.2,

|Ri jik| ≤ 2c1S, (6.15)

|Ri jkl| ≤
8
3

c1S. (6.16)

Thus, there exists a constant c(n) such that

|R| ≤ c(n)|S|.

�

A direct consequence of the above lemma is the following proposition.

115



Proposition 6.4.4. Let (M, g(t)), t ∈ [0,T ), be a maximal Ricci flow solution with NIC,

then there exists c = c(n, g(0)) such that |R| ≤ cS along the flow.

Proof. If n > 4 then the result follows from part b) of Lemma 6.4.3.

If n = 4, then by the pinching estimate of [24] and Lemma 2.3.4,

|R̊c|
S
≤ c1(n, g(0)) + c2(n) sup

M×[0,T )

√
|W|
S
≤ c1 + c2

√
1
√

6
.

Furthermore, |R|2 = |W|2 + S2

6 + 2|R̊c|2, the result follows. �

Remark 6.4.2. One easy consequence is that a non-flat Ricci flow solution on a closed

manifold with NIC satisfies the uniform-growth condition as in Definition 6.0.6.

Theorem 6.4.5. Let (M, g(t)), t ∈ [0,T ), be a Ricci flow solution satisfying the uniform-

growth condition. If either∫
M
|S|αdµg(t) < ∞, for some α > n/2,

or ∫ T

0

∫
M
|S|αdµg(t)dt < ∞ for some α ≥

n
2

+ 1,

then the solution can be extended past time T.

Proof. First we observe that, by Holder inequality, for the second condition, it

suffices to prove the case α = n
2 + 1.

The proof is by a contradiction argument. Suppose the flow develops a sin-

gularity at time T then we carry a point-picking and rescaling procedure de-

scribed in Section 3.3 to obtain a singularity model (M∞, g∞(s), x∞) with

|R∞(x∞, 0)| = 1. (6.17)
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Recalling the scaling property of S, we calculate:∫
M
|S(gi(.))|αdµgi(.) =

∫
M

Q−αi |S(g(.)|αQn/2
i dµg(.)

= Q
n
2−α

i

∫
M
|S|αdµg(.) → 0 as i→ ∞.

In the second case, we have:∫ 0

−1

∫
M
|S(gi(s))|

n
2 +1dµgi(s)ds =

∫ ti

ti− 1
Qi

∫
M

Q−
n
2−1

i |S(g(t)|
n
2 +1Qn/2

i dµg(t)Qidt

=

∫ ti

ti− 1
Qi

∫
M
|S(g(t)|

n
2 +1dµg(t)dt → 0 as i→ ∞.

By the dominating convergence theorem, the singularity model (M∞, g∞(s), x∞)

is scalar flat, which is a contradiction to our uniform-growth condition. �

Applying Lemma 6.2.1 in this context, we obtain the following lemma.

Lemma 6.4.6. Let (M, g(t)), t ∈ [0,T ), be a Ricci flow solution satisfying the uniform-

growth condition. Suppose ψ : (0,∞)→ (0,∞) is a nondecreasing function such that∫ ∞

1

1
ψ(s)

ds = ∞. (6.18)

If there is a mean value inequality of the form

O(t) ≤
∫ t

0
C1ψ(O(s))G(s)ds + C2 = h(t), (6.19)

and
∫ T

0
G(t)dt < ∞, then the solution can be extended past time T.

Proof. If T is a first singular time then, by Theorem 3.1.1, limt→T Q(t) = ∞. The

uniform-growth condition implies that the curvature tensor and the scalar cur-

vature blow up together. Applying Lemma 6.2.1 we obtain a contradiction,

hence the result holds. �

We are ready to state a mean value inequality.
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Lemma 6.4.7. Let (M, g(t)), t ∈ [0,T ), be a maximal Ricci flow solution satisfying the

uniform-growth condition. Then the following mean value inequality holds: there exists

C1 = C1(n, g(0)) and C0 such that,

sup
[0,t]

O(t) ≤ C0

∫ t

0

∫
M
|S(g(t))|n/2+2dµg(t)dt + C1 (6.20)

for all t < T .

Proof. First we observe that there is a constant c0(n) such that |S|(x, t) ≤ c0|R|(x, t).

Also by Lemma 3.1.2, if t ≤ 1
16Q0

then

O(t) ≤ c0Q(t) ≤ 2c0Q(0). (6.21)

Let C1 = 2c0Q(0). Suppose the statement is false then there exist sequences ti → T

and ai → ∞ such that

ai

∫ ti

0

∫
M
|S|n/2+2dµg(s)ds + 2c0Q(0) ≤ sup

[0,ti]
O(t) ≤ c0 sup

[0,ti]
Q(t).

Let Qi = sup[0,ti] Q(t) then there exist xi, t̃i → T such that Qi = |R(xi, t̃i)|.

Now we can invoke a convergence process again to obtain a singularity model

(M∞, g∞(t), x∞), t ∈ [−∞, 0], with |R∞(x∞, 0)| = 1.

On the other hand, we have∫ 0

−1

∫
M
|S(gi(s))|n/2+2dµgi(s)ds =

1
Qi

∫ t̃i

t̃i− 1
Qi

∫
M
|S(g(t)|n/2+2dµg(t)dt

≤
c0Qi − 2c0Q(0)

aiQi
→ 0.

Thus, by the dominating convergence theorem, the limit solution is scalar flat,

which is a contradiction to the uniform-growth condition. �

Proof. (Theorem 6.0.7) Applying Lemma 6.4.6 with the function ψ(s) = s ln(1 +

s)p, 0 ≤ p ≤ 1 (it is easy to check that it is nondecreasing and
∫ ∞

1
1
ψ(s)ds = ∞) and

Lemma 6.4.7 yields the result. �
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CHAPTER 7

THE WEYL TENSOR OF A GRADIENT RICCI SOLITON

As the major obstruction to understand GRS in higher dimensions is the non-

triviality of the Weyl tensor, this chapter is devoted to studying the delicate role

of the Weyl tensor within a gradient soliton structure. This is joint work with X.

Cao [26].

In particular, we derive several new identities on the Weyl tensor of GRS in

dimension four. In the first part, we prove the following Bochner-Weitzenböck

type formula for the norm of the self-dual Weyl tensor using flow equations and

some ideas related to Einstein manifolds.

Theorem 7.0.8. Let (M, g, f , λ) be a four-dimensional GRS. Then we have the following

Bochner-Weitzenböck formula:

∆ f |W+|2 =2|∇W+|2 + 4λ|W+|2 − 36detW+ −
〈
Rc ◦ Rc,W+〉

=2|∇W+|2 + 4λ|W+|2 − 36detW+ −
〈
Hess f ◦Hess f ,W+〉 . (7.1)

It potentially has several applications and we will present a couple of them

in Section 7.2 including a gap theorem. More precisely, if the GRS is not locally

conformally flat and the divergence of the Weyl tensor is relatively small, then

the L2-norm of the Weyl tensor is bounded below by a topological constant (cf.

Theorem 7.2.1). The proof, in a similar manner to that of [48], uses some ideas

from the solution to the Yamabe problem.

In the second part, we are mostly concerned with the interaction of different

curvature components, gradient and Hessian of the potential function. In par-

ticular, an interesting connection is illustrated by the following integration by

parts formula.
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Theorem 7.0.9. Let (M, g, f , λ) be a closed GRS. Then we have the following identity:∫
M
〈W,Rc ◦ Rc〉 =

∫
M
〈W,Hess f ◦Hess f 〉 =

∫
M

W(Hess f ,Hess f ) =

∫
M

Wi jkl fik f jl

=
1

n − 3

∫
M
〈δW, (n − 4)M + (n − 2)P〉 . (7.2)

In particular, in dimension four, the identity becomes∫
M
〈W,Rc ◦ Rc〉 = 4

∫
M
|δW|2. (7.3)

Remark 7.0.3. For definitions of M and P, see Section 7.3. In dimension four, the

statement also holds if replacing W by W±, see Corollary 7.3.8. This result exposes the

intriguing interaction between the Weyl tensor and the potential function f on a GRS. It

will be interesting to extend those identities to a (possibly non-compact) smooth metric

measure space or generalized Einstein manifold.

The interactions of various curvature components and the soliton potential

function can be applied to study the classification problem. For example, Theo-

rem 7.4.1 asserts rigidity of the Ricci curvature tensor in dimension four. More

precisely, if the Ricci tensor at each point has at most two eigenvalues with mul-

tiplicity one and three, then any such closed GRS must be rigid. It is interesting

to compare this result with classical classification results of the Codazzi ten-

sor, which requires both distribution of eigenvalues and information on the first

derivative (see [8, Chapter 16, Section C]).

This rest of the chapter is organized as follows. Section 7.1 provides a

proof of Theorem 7.0.8 and Section 7.2 gives immediate applications of the new

Bochner-Weitzenböck type formula. In Section 7.3, we first discuss a general

framework to study the interaction of different components of the curvature

with the potential function, and then prove Theorem 7.0.9. Then, in the last

Section, we apply our framework to obtain various rigidity results.
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7.1 Bochner-Weitzenböck Formula

In this section, we prove Theorem 7.0.8, a new Bochner-Weitzenböck formula

for the Weyl tensor of GRS’s, which generalizes the one for Einstein manifolds.

Bochner-Weitzenböck formulas have been proven a powerful tool to find con-

nections between topology and geometry with certain curvature conditions (for

example, see [47, 83, 99]).

Particularly, in dimension four, if δW+ = 0 (this contains all Einstein mani-

folds), we have the following well-known formula (see [8, 16.73]),

∆|W+|2 = 2|∇W+|2 + S|W+|2 − 36detW+. (7.4)

This equation plays a crucial role to obtain a L2-gap theorem of the Weyl tensor

and to study the classification problem of Einstein manifolds (cf. [48, 49, 101]).

Our first technical lemma gives a formula of ∆ f W in a local frame. Also it is

noticed that the Einstein summation convention is used repeatedly here.

Lemma 7.1.1. Let (M, g, f , λ) be a GRS and {ei}
n
i=1 be a local normal frame, then the

following holds,

∆ f Wi jkl =2λWi jkl − 2(Ci jkl −Ci jlk + Cik jl −Cil jk)

−
2

(n − 2)2 gpq(RcipRcqkg jl − RcipRcqlg jk + Rc jpRcqlgik − Rc jpRcqkgil)

+
2S

(n − 2)2 (Rcikg jl − Rcilg jk + Rc jlgik − Rc jkgil) (7.5)

−
2

n − 2
(RikR jl − R jkRil) −

2(S2 − |Rc|2)
(n − 1)(n − 2)2 (gikg jl − gilg jk),

here Ci jkl = gpqgrsWpi jrWslkq.
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Proof. First, as in Section 3.5, a GRS can be realized as a self-similar solution to

the Ricci flow via φ(x, t), a family of diffeomorphisms generated by, for τ(t) =

1 − 2λt, X = 1
τ
∇ f . In particular, W(t) = τφ∗W. Let p be a point in M and {ei}

n
i=1

be a basis of TpM, and we obtain a local normal frame via extending ei to a

neighborhood by parallel translation along geodesics with respect to g(0). We

observe, at that chosen point,

d
dt

W(t)i jkl |t=0= (
d
dt
τφ∗W)i jkl |t=0= −

2λ
τ

Wi jkl + (L∇ f W)i jkl. (7.6)

Furthermore,

L∇ f Wi jkl =∇ f (Wi jkl) −W([∇ f , ei], e j, ek, el) −W(ei, [∇ f , e j], , ek, el)

−W(ei, e j, [∇ f , ek], el) −W(ei, e j, ek, [∇ f , el]). (7.7)

We calculate that

W([∇ f , ei], e j, ek, el) =W(∇∇ f ei − ∇ei∇ f , e j, ek, el) = −W(∇ei∇ f , e j, ek, el).

By the soliton structure, ∇ei∇. f = −Rc(ei, .) + λg(ei, .). Thus,

W([∇ f , ei], e j, ek, el) = −W(λei − Rc(ei), e j, ek, el)

= −λWi jkl + gpqRcipWq jkl. (7.8)

Combining (7.6),(7.7), and (7.8) we obtain,

d
dt

W(t)i jkl |t=0=∇ f (Wi jkl) + 2λWi jkl

− gpq(RcipWq jkl + Rc jpWiqkl + RckpWi jql + RcipWq jkl).

Now, in combination with (3.9), the result follows. �

In dimension four, we obtain simplification due to the special structure given

by the Hodge operator. That gives the proof of the first main theorem.
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Proof. (Theorem 7.0.8) We observe that,

〈
W+,∆ f W+

〉
=

〈
W+,∆W+〉 − 〈

W+,∇∇ f W+
〉

=
〈
W+,∆W+〉 − 1

2
∇∇ f |W+|2.

Therefore,

∆ f |W+|2 = ∆|W+|2 − ∇∇ f |W+|2 = 2
〈
W+,∆ f W+

〉
+ 2|∇W+|2.

To calculate the first term of the right hand side, we use the normal form of

the Weyl tensor (2.14). As usual, a local normal frame is obtained by parallel

translation along geodesic lines. Then (2.11) gives a basis of eigenvectors {αi}
3
i=1

of W+ with corresponding eigenvalues λi = ai + bi. Consequently,

〈
W+,∆ f W+

〉
=

∑
i

λi∆ f W+(αi, αi). (7.9)

In order to use Lemma 7.1.1, it is necessary to calculate the Ci jkl terms. By the

normal form, we have

C1212 = a2
1 + b2

2 + b2
3, C1234 = −2a1b3,

C1221 = −2b2b3, C1243 = 2a1b2,

C1122 = 2a2a3, C1324 = 2a2b3,

C1221 = −2b2b3, C1423 = −2a3b2.

Thus,

∆ f W1212 =2λa1 − 2(a2
1 + b2

1 + 2a2a3 + 2b2b3)

−
1
2

∑
p

(Rc2
1p + Rc2

2p) +
S
2

(Rc11 + Rc12)

− (Rc11R22 − Rc2
12) −

1
6

(S 2 − |Rc|2),

∆ f W1234 =2λb1 − 4(a1b1 + a2b3 + a3b2) + (Rc13Rc24 − Rc23Rc14).
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Therefore,

∆ f W+(α1, α1) = 2λλ1 − 2λ2
1 − 4λ2λ3 −

1
12

(|Rc|2 − S 2) − T1, (7.10)

in which,

2T1 =Rc11Rc22 + Rc33Rc44 + 2Rc13Rc24 − Rc2
12 − 2Rc23Rc14 − Rc2

34

=(Rc ◦ Rc)(α1, α1).

Similar calculations hold when replacing α1 by α2, α3,

∆ f W+(α2, α2) =2λλ2 − 2λ2
2 − 4λ1λ3 −

1
12

(|Rc|2 − S 2) −
1
2

Rc ◦ Rc(α2, α2), (7.11)

∆ f W+(α3, α3) =2λλ3 − 2λ2
3 − 4λ1λ2 −

1
12

(|Rc|2 − S 2) −
1
2

Rc ◦ Rc(α3, α3). (7.12)

Combining (7.9), (7.10), (7.11), (7.12) yields,〈
W+,∆ f W+

〉
=2λ|W+|2 − 18detW+ −

∑
i

Tiλi

=2λ|W+|2 − 18detW+ −
1
2

〈
Rc ◦ Rc,W+〉 .

The first equality then follows. The second equality comes from the soliton

equation, the property that W+ is trace-free and Remark 3.5.2. �

7.2 Applications of the Bochner-Weitzenböck Formula

This section presents some applications of the Bochner-Weitzenböck formula.

7.2.1 A Gap Theorem for the Weyl Tensor

In [48], under the assumptions W+ , 0, δW+ = 0, and the positivity of the Yam-

abe constant, M. Gursky proves the following inequality, relating ||W+||L2 with
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topological invariants of a closed four-manifold,∫
M
|W+|2dµ ≥

4
3
π2(2χ(M) + 3τ(M)). (7.13)

Our main result here is to prove an analog for GRS’s. It is noted that the partic-

ular structure of GRS allows us to relax the harmonic self-dual condition at the

expense of a worse coefficient due to the lack of an improved Kato’s inequality.

Theorem 7.2.1. Let (M, g, f , λ) be a closed four-dimensional shrinking GRS with∫
M

〈
W+,Hess f ◦Hess f

〉
≤

2
3

∫
S|W+|2, (7.14)

then, unless W+ ≡ 0, ∫
M
|W+|2dµ >

4
11
π2(2χ(M) + 3τ(M)). (7.15)

Remark 7.2.1. By Corollary 7.3.8, assumption (7.14) is equivalent to∫
|δW+|2 ≤

∫
S
6
|W+|2.

To prove Theorem 7.2.1, we follow an idea of [48] and introduce a Yamabe-

type conformal invariant. First, the conformal Laplacian is given by,

L = −6∆ + S.

Furthermore, we define that

Fa,b =aS − b|W+|,

La,b = − 6a∆g + Fa,b = aL − bW+,

where a and b are constants to be determined later. Under a conformal transfor-
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mation as described in Section 2.5, for any function Φ, we have

L̃(Φ) =u−3L(Φu),

L̃a,bΦ =u−3La,b(Φu),

F̃a,b =u−3(−6a∆g + Fa,b)u,∫
M

F̃a,bdµ̃ =

∫
M

u(−6a∆g + Fa,b)udµ

=

∫
M

(Fa,bu2 + 6a|∇u|2)dµ.

The Yamabe problem is, for a given Riemannian manifold (M, g), to find a

constant scalar curvature metric in its conformal class [g]. That is equivalent to

find a critical point of the following functional, for any C2 positive function u,

let g̃ = u2g, define

Yg[u] =
〈u, Lu〉L2

||u||2L4

=

∫
M

S̃dµ̃√∫
M

dµ̃
.

Then the conformal invariant Y is defined as

Y(M, [g]) = inf{Yg[u]: u is a positive C2 function on M}.

For an expository account on the Yamabe problem, see [65].

As Fa,b conformally transforms like the scalar curvature, in analogy with the

discussion above, we can define the following conformal invariant.

Definition 7.2.2. Given a Riemannian manifold (M, g), define

Ŷa,b(M, [g]) = inf{(Ŷa,b)g[u]: u is a positive C2 function on M},

where

(Ŷa,b)g[u] =

〈
u, La,bu

〉
L2

||u||2L4

=

∫
M

F̃a,bdµ̃√∫
M

dµ̃
.
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For the case of interest, we shall denote

F =F1,6
√

6 = S − 6
√

6|W+|,

Ŷ(M) =Ŷ1,6
√

6(M, [g]),

when the context is clear. First we observe the following simple inequality.

Lemma 7.2.3. Let (Mn, g) be a closed n-dimensional Riemannian manifold which is not

locally conformally flat, and (S n, gsd) be the sphere with standard metric. Then

Ŷ(M, [g]) ≤ Y(M, [g]) < Y(S n, [gsd]) = Ŷ(S n, [gsd]). (7.16)

Proof. The first inequality follows from the definition and the following obser-

vation. Given a metric g, a positive function u and b ≥ 0, then

〈u, Lu〉L2 −
〈
u, L1,bu

〉
L2

=

∫
M

b|W+|u2dµ ≥ 0.

The second inequality is a result of T. Aubin [3] and R. Schoen [88]. The last

inequality is an immediate consequence of the fact that the standard metric on

S n is locally conformally flat (W = 0). �

On a complete gradient shrinking soliton, the scalar curvature is positive un-

less the soliton is isometric to the flat Euclidean space [86]. Therefore, if the GRS

is not flat then the existence of a solution to the Yamabe problem [65] implies

that Yg > 0. This observation is essential because of the following result.

Proposition 7.2.4. Let (M, g) be a closed four-dimensional Riemannian manifold. If

Y(M) > 0 and Ŷ(M) ≤ 0, then there is a smooth metric g̃ = u2g such that∫
M

S̃2dµ̃ ≤ 216
∫

M
|W̃+|2dµ̃. (7.17)

Furthermore, the equality holds only if Ŷ(M) = 0 and S̃ = 6
√

6|W̃| .
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Proof. The proof is almost identical to [48, Prop 3.5]. Thus, we provide a brief

argument here. Through a conformal transformation, the Yamabe problem can

be solved via variational approach for an appropriate eigenvalue PDE problem.

In particular, the existence of solution under the assumption Y(M) < Y(S n) de-

pends solely on the analysis of regularity of the Laplacian operator (but not on

the reaction term) [65, Theorem 4.5].

In our case, F conformally transforms as scalar curvature and Lemma 7.2.3

holds, then there exists a minimizer v for Ŷg[.], such that under normalization

||v||L4 = 1, the metric g̃ = v2g satisfies F̃ = S̃−6
√

6|W̃+| = Ŷ(M). Applying Y(M) > 0

and Ŷ(M) ≤ 0 we obtain,∫
M

S̃2dµ̃ =

∫
M

6
√

6|W̃+ |̃Sdµ̃ + Ŷ(M)
∫

M
S̃dµ̃

≤

∫
M

6
√

6|W̃+ |̃Sdµ̃

≤ 6
√

6(
∫

M
|W̃+|2dµ̃)1/2(

∫
M
|̃S|2dµ̃)1/2.

Therefore,
∫

M
S̃2dµ̃ ≤ 216

∫
M
|W̃+|2dµ̃. The equality case is attained if only if g̃

attains the infimum, Ŷ(M) = 0 and S̃ = 6
√

6|W̃|. �

Proposition 7.2.5. Let (M, g, f , λ) be a closed four-dimensional shrinking GRS satis-

fying (7.14) and W+ , 0, then Ŷ(M) ≤ 0. Moreover, equality holds only if W+ has the

form ωdiag(−1,−1, 2) for some ω ≥ 0 at each point.

Proof. By Theorem 7.0.8, we have

∆ f |W+|2 = 2|∇W+|2 + 4λ|W+|2 − 36detΛ2
+
W+ −

〈
Rc ◦ Rc,W+〉 .

Integrating both sides and applying (7.14) yield∫
M

∆ f |W+|2dµ ≥
∫

M

[
2|∇W+|2 + (

S
3

+ ∆ f )|W+|2 − 36detΛ2
+
W+

]
.
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Via integration by parts, we have∫
M
∇ f (|W+|2)dµ =

∫
M

〈
∇ f ,∇|W+|2

〉
dµ = −

∫
M

∆ f |W+|2dµ.

Therefore, we arrive at

0 ≥
∫

M

(
2|∇W+|2 +

S
3
|W+|2 − 36detΛ2

+
W+

)
.

We also have the following pointwise estimates,

|∇W+|2 ≥ |∇|W+||2,

−18detW+ ≥ −
√

6|W+|3.

The first one is the classical Kato’s inequality while the second one is purely

algebraic. Thus, for u = |W+|,∫
M

(
1
3

Fu2 + 2|∇u|2)dµ ≤ 0.

Hence, if |W̃+| > 0 everywhere then the statement follows. If |W̃+| = 0 some-

where, let Mε be the set of points at which |W̃+| < ε. By the analyticity of a closed

GRS [4], Vol(Mε) → 0 as ε → 0. Let ηε : [0,∞) → [0,∞) be a C2 positive function

which is ε/2 on [0, ε/2], identity on [ε,∞) and 0 ≤ η′ε ≤ 10. If uε = ηε ◦ u, then uε is

C2 and positive. In addition, we have,∫
M

Fu2
εdµ ≤

∫
M−Mε

Fu2dµ + Cε2Vol(Mε),∫
M
|∇uε |2dµ =

∫
M
|η′ε∇u|2dµ ≤

∫
M−Mε

|∇u|2dµ + CVol(Mε),

where C is a constant depending on the metric. Therefore, we have,

inf
ε>0
{

∫
M

(Fu2
ε + 6|∇uε |2)dµ} ≤ 0.

Consequently, Ŷ(M) ≤ 0.
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Now, equality holds only if
∫

M
(1

3 Fu2 + 2|∇u|2)dµ = 0 and the equality happens

in each point-wise estimate above. The result then follows.

�

We are now ready to prove the main result of this subsection.

Proof. (Theorem 7.2.1)

By Proposition 7.2.5, we have Ŷ(g) ≤ 0 and Y(M) > 0. Otherwise S = 0 and

the GRS is flat by [86], which is a contradiction to W+ , 0. Therefore, following

Proposition 7.2.4, there is a conformal transformation g̃ = u2g with∫
M

S̃2dµ̃ ≤ 216
∫

M
|W̃+|2dµ̃. (7.18)

According to (2.16) and (2.17),

2π2(2χ(M) + 3τ(M)) =

∫
M
|W̃+|2dµ̃ −

1
4

∫
M
|Ẽ|2dµ̃ +

1
48

∫
M

S̃2dµ̃

≤

∫
M
|W̃+|2dµ̃ +

1
48

∫
M

S̃2dµ̃ (7.19)

≤ (1 +
9
2

)
∫

M
|W̃+|2dµ̃.

Here we used (7.18) in the last step. Since ||W+||L2 is conformally invariant, (7.15)

then follows.

Now the equality holds only if all equalities hold in (7.19), (7.18) and (7.14).

The first one implies that g̃ is Einstein. Therefore, by [49, Theorem 1], inequality

(7.18) is strict unless S ≡ 0. But this is a contradiction to Y(M) > 0. Thus the

inequality is strict.

�

130



7.2.2 Isotropic Curvature

Another application is the following inequality which is an improvement of

[100, Prop 2.6].

Proposition 7.2.6. Let (M, g, f , λ) be a four-dimensional GRS, then we have

∆ f u ≤ (2λ +
3
2

u − S)u −
1
4
|Rc|2 (7.20)

in the distribution sense where u(x) is the smallest eigenvalue of S
3 − 2W±.

Proof. Let X1234 = S
3 − 2W(e12 + e34, e12 + e34) for any 4–orthonormal basis. We

use the normal form discussed in (2.14) and obtain a local frame by parallel

translation along geodesic lines. We denote {αi}
3
i=1 the basis of Λ+

2 as in (2.11)

with corresponding eigenvalues λi = ai + bi. Without loss of generality, we can

assume a1 + b1 ≥ a2 + b2 ≥ a3 + b3 and thus u(x) = X1234(x). Using Lemma 7.1.1,

we compute

∆ f W1212 =2λa1 − 2(a2
1 + b2

1 + 2a2a3 + 2b2b3)

−
1
2

∑
p

(Rc2
1p + Rc2

2p) +
S
2

(Rc11 + Rc12)

− (Rc11R22 − Rc2
12) −

1
6

(S 2 − |Rc|2),

∆ f W1234 =2λb1 − 4(a1b1 + a2b3 + a3b2) + (Rc13Rc24 − Rc23Rc14).

Let us recall that, ∆ f S = 2λS − 2|Rc|2. Thus, for 2T1 = (Rc ◦ Rc)(α1, α1), we have

∆ f (X1234) =2λ
S
3
−

2
3
|Rc|2 − 4λ(a1 + b1) + 4λ2

1 + 8λ2λ3 +
1
6

(|Rc|2 − S2) + T1

=2λX1234 −
1
2
|Rc|2 + 4λ2

1 + 8λ2λ3 −
1
6

S2 + T1.

Next we observe that λ2 + λ3 = −λ1 and 8λ2λ3 ≤ 2λ2
1. By Cauchy-Schwartz
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inequality, T1 ≤
1
4 |Rc|2. Therefore,

∆ f (X1234) ≤2λX1234 −
1
4
|Rc|2 + 6(

S
3 − X1234

2
)2 −

1
6

S2

≤2λX1234 +
3
2

X2
1234 − SX1234 −

1
4
|Rc|2 = u(2λ +

3
2

u − S) −
1
4
|Rc|2.

Since ∆ f u ≤ ∆ f (X1234) in the barrier sense of E. Calabi (see[17]), the result then

follows. �

7.3 A Framework Approach

In this section, we shall propose a framework to study interactions be-

tween components of curvature operator and the potential function on a GRS

(M, g, f , λ). In particular, we represent the divergence and the interior prod-

uct i∇ f on each curvature component as linear combinations of four operators

P,Q,M,N. The geometry of these operators, in turn, gives us information about

the original objects. It should be noted that some identities here have already

appeared elsewhere.

Now we define the elements of the framework, first via a local frame and

then provides a coordinate-free version. Let α ∈ Λ2, X,Y,Z ∈ T M, and {ei}
n
i=1 be a

local normal orthonormal frame on a GRS (Mn, g, f , λ).
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Definition 7.3.1. The tensors P,Q,M,N : Λ2T M ⊗ T M → R are defined as:

Pi jk = ∇iRc jk − ∇ jRcik = ∇ j fik − ∇i f jk = R jikp∇
p f , (7.21)

P(X ∧ Y,Z) = −R(X,Y,Z,∇ f ) = (d∇Rc)(X,Y,Z) = δR(Z, X,Y),

P(α,Z) = R(α,∇ f ∧ Z) = δR(Z, α);

Qi jk = gki∇ jS − gk j∇iS = 2(gkiR jp − gk jRip)∇p f , (7.22)

Q(X ∧ Y,Z) = 2(X,Z)Rc(Y,∇ f ) − 2(Y,Z)Rc(X,∇ f ),

Q(α,Z) = −2Rc(α(Z),∇ f ) = −2 〈αZ,Rc(∇ f )〉 ;

Mi jk = Rk j∇i f − Rki∇ j f , (7.23)

M(X ∧ Y,Z) = Rc(Y,Z)∇X f − Rc(X,Z)∇Y f = −Rc((X ∧ Y)∇ f ,Z),

M(α,Z) = −Rc(α(∇ f ),Z) = − 〈α∇ f ,Rc(Z)〉 ;

Ni jk = gk j∇i f − gki∇ j f , (7.24)

N(X ∧ Y,Z) = 〈Y,Z〉 ∇X f − 〈X,Z〉 ∇Y f = 〈(X ∧ Y)Z,∇ f 〉 ,

N(α,Z) = 〈αZ,∇ f 〉 = −α(Z,∇ f ).

Remark 7.3.1. The tensors P±,Q±,M±,N± : Λ±2 T M⊗T M → R are defined by restrict-

ing α ∈ Λ±2 T M. They can be seen as operators on Λ2 by standard projection.

Remark 7.3.2. Before proceeding further, let us remark on the essence of these tensors.

P ≡ 0 if and only if the curvature is harmonic; Q ≡ 0 if and only if the scalar curvature

is constant; N ≡ 0 if and only if the potential function f is constant; finally, M ≡ 0 if

and only if either ∇ f = 0 or Rc vanishes on the orthogonal complement of ∇ f .

7.3.1 Decomposition Lemmas

Using the framework above, we now can represent the interior product i∇ f on

components of the curvature tensor as follows. Again the Einstein summation
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convention is used here.

Lemma 7.3.2. Let (M, g, f , λ) be a GRS, for P, Q, M, N as in Definition 7.3.1, in a local

normal orthonormal frame, we have

Ri jkp∇
p f = R(ei, e j, ek,∇ f ) = −Pi jk = ∇pRi jkp = −δR(ek, ei, e j), (7.25)

(g ◦ g)i jkp∇
p f = (g ◦ g)(ei, e j, ek,∇ f ) = −2Ni jk, (7.26)

(Rc ◦ g)i jkp∇
p f = (Rc ◦ g)(ei, e j, ek,∇ f ) =

1
2

Qi jk − Mi jk, (7.27)

Hi jkp∇
p f = H(ei, e j, ek,∇ f ) = Mi jk −

1
2

Qi jk − 2λNi jk, (7.28)

Wi jkp∇
p f = W(ei, e j, ek,∇ f ) (7.29)

= −Pi jk −
Qi jk

2(n − 2)
+

Mi jk

(n − 2)
−

SNi jk

(n − 1)(n − 2)
.

Proof. The first formula is well-known (cf. [23]), following from the soliton

equation and Bianchi identities. For the second, we compute,

(g ◦ g)i jkp∇
p f =2(gikg jp − gipg jk)∇p f

=2gik∇ j f − 2g jk∇i f = −2Ni jk.

For the third, we use (3.31) to calculate

(Rc ◦ g)i jkp∇
p f =(Rcikg jp + Rc jpgik − Rcipg jk − Rc jkgip)∇p f

=Rcik∇ j f +
1
2

(gik∇ jS − g jk∇iS) − Rc jk∇i f

=
1
2

Qi jk − Mi jk.

The next formula is a consequence of the above formulas, definition of H (3.34)

and the soliton equation (3.28). Finally, the last one comes from decomposition

of the curvature operator (2.1) and previous formulas; it appeared, for example,

in [34]. �
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In addition, the divergence on these components can be written as linear

combinations of P,Q,M,N.

Lemma 7.3.3. Let (M, g, f , λ) be a GRS, for P, Q, M, N as in Definition 7.3.1, in a local

normal orthonormal frame, we have

∇pRi jkp = −Pi jk, (7.30)

∇p(Sg ◦ g)i jkp = 2Qi jk, (7.31)

∇p(Rc ◦ g)i jkp = −∇pHi jkp = −Pi jk +
1
2

Qi jk, (7.32)

∇pWi jkp = −
n − 3
n − 2

Pi jk −
n − 3

2(n − 1)(n − 2)
Qi jk := −

n − 3
n − 2

Ci jk. (7.33)

Proof. The first formula is well-known and comes from the second Bianchi iden-

tity [23]. For the second, we compute,

∇p(Sg ◦ g)i jkp = 2∇p(Sgikg jp − Sgipg jk)

= 2gikg jp∇
pS − g jkgip∇

pS

= 2gik∇ jS − g jk∇iS = 2Qi jk.

For the next one, we use (3.30) to calculate,

∇p(Rc ◦ g)i jkp = ∇p(Rcikg jp + Rc jpgik − Rcipg jk − Rc jkgip)

= g jp∇
pRcik + gik∇

pRc jp − g jk∇
pRcip − gip∇

pRc jk

= ∇ jRcik +
1
2

(gik∇ jS − g jk∇iS) − ∇iRc jk

=
1
2

Qi jk − Pi jk.

Finally, the last one comes from decomposition of curvature (2.1) and previous

formulas; it also appeared in, for example, [39, Eq. (9)]. �

Remark 7.3.3. C defined in (7.33) is also called the Cotton tensor in literature.
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Remark 7.3.4. By the standard projection, and

(δW)± = δ(W±),

(i∇ f W)± = i∇ f W±,

the analogous identities hold if replacing W, P,Q,M,N in Lemmas 7.3.2 and 7.3.3 by

W±, P±,Q±,M±,N±, respectively.

The following observation is an immediate consequence of Lemma 7.3.3.

Proposition 7.3.4. Let (Mn, g, f , λ), n > 2, be a GRS and H given by (3.34). Then the

tensor

F = W +
n − 3
n − 2

H +
n(n − 3)S

4(n − 1)(n − 2)
g ◦ g

is divergence free.

Remark 7.3.5. The result can be viewed as a generalization of the harmonicity of the

Weyl tensor on an Einstein manifold.

Lastly, we introduce the following tensor D which plays a crucial role in the

classification problem (cf. [18], [21], [34]),

Di jk = −
Qi jk

2(n − 1)(n − 2)
+

Mi jk

n − 2
−

SNi jk

(n − 1)(n − 2)
(7.34)

= Ci jk + Wi jkp∇
p f .
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7.3.2 Norm Calculations

Lemma 7.3.5. Let (M, g, f , λ) be a GRS, then the following identities hold:

2 〈P,Q〉 = −|∇S|2,

2 〈P,N〉 = 〈∇ f ,∇S〉 ,

2 〈Q,Q〉 = 2(n − 1)|∇S|2,

2 〈M,M〉 = 2|Rc|2|∇ f |2 −
1
2
|∇S|2,

2 〈N,N〉 = 2(n − 1)|∇ f |2,

2 〈Q,M〉 = |∇S|2 − 2S 〈∇ f ,∇S〉 ,

2 〈Q,N〉 = −2(n − 1) 〈∇ f ,∇S〉 ,

2 〈M,N〉 = 2S |∇ f |2 − 〈∇ f ,∇S〉 .

Furthermore, if M is closed, then∫
M

2 〈P, P〉 e− f =

∫
M
|∇Rc|2e− f ,∫

M
2 〈P,M〉 =2

∫
M

(λ|Rc|2 − Rc3) +

∫
M

〈
∇ f ,∇|Rc|2

〉
+

1
2

∫
M
|∇S|2.

Proof. The main technique is to compute under a normal orthonormal local

frame. For example,

2 〈P,Q〉 = Pi jkQi jk

= (∇iRc jk − ∇ jRcik)(gki∇ jS − gk j∇iS)

= 2(∇iRc jk − ∇ jRcik)gki∇ jS

= 2∇ jS(∇kRck j − ∇ jRckk)

= |∇S|2 − 2|∇S|2 = −|∇S|2.

Other equations follow from similar calculation.
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When M is closed, we can integrate by parts. In particular, the first equation

was first derived in [23]. For the second, we compute that∫
M

2 〈P,M〉 = 2
∫

M
(∇iRc jk − ∇ jRcik)Rck j∇i f

=

∫
M
∇i f∇iRc2

jk − 2
∫

M
∇ jRcikRck j∇i f ,∫

M
∇ jRcikRck j∇i f = −

∫
M

RcikRck j fi j −

∫
M

Rcik fi∇ jRck j

= −

∫
M

(λ|Rc|2 − Rc3) −
1
4

∫
M
|∇S|2.

Hence, the statement follows. �

Remark 7.3.6. The factor of 2 is due to our convention of calculating norm. Some

special cases of dimension four also appeared in [14, Proposition 4].

An interesting consequence of the above calculation is the following corol-

lary, which exposes the orthogonality of Q,N versus i∇ f W, δW.

Corollary 7.3.6. Let (M, g, f , λ) be a GRS.

a. At each point, we have

0 =
〈
Q, i∇ f W

〉
=

〈
N, i∇ f W

〉
= 〈Q, δW〉 = 〈N, δW〉 .

b. If M is closed, then,∫
M

2|δW|2e− f = (
n − 3
n − 2

)2
∫

M
(|∇Rc|2 −

1
(n − 1)

|∇S|2)e− f . (7.35)

Proof. Part a) follows immediately from Lemmas 7.3.2, 7.3.3, 7.3.5, and our con-
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vention (2.3). For example,

〈
Q, i∇ f W

〉
=

∑
i< j

Qi jk(i∇ f W)ki j

=
∑
i< j

Qi jk∇
p f Wpki j = −

∑
i< j

Qi jkWi jkp∇
p f

=

〈
Q, P +

Q
2(n − 2)

−
M

n − 2
+

SN
(n − 1)(n − 2)

〉
= −
|∇S|2

2
+

(n − 1)|∇S|2

2(n − 2)
−
|∇S|2

2(n − 2)
+

S 〈∇ f ,∇S〉
n − 2

−
(n − 1)S 〈∇ f ,∇S〉

(n − 1)(n − 2)

=0.

Other formulas follow from similar calculations.

For part b) we observe that,

|δW|2 =(
n − 3
n − 2

)2
〈
P +

Q
2(n − 1)

, P +
Q

2(n − 1)

〉
=(

n − 3
n − 2

)2
〈
P +

Q
2(n − 1)

, P
〉
.

Notice that we apply part a) in the last step. Consequently, applying Lemma

7.3.5 again yields

2
∫

M
|δW|2e− f = (

n − 3
n − 2

)2
∫

M
2
〈
P +

Q
2(n − 1)

, P
〉

e− f

= (
n − 3
n − 2

)2
∫

M
(|∇Rc|2 −

|∇S|2

2(n − 1)
)e− f .

�

Remark 7.3.7. Part b) recovers the well-known fact that harmonic curvature implies

harmonic Weyl tensor and constant scalar curvature.

Now we are ready to prove Theorem 7.0.9.
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Proof. (Theorem 7.0.9) First, we observe,

〈W,Hess f ◦Hess f 〉 =
∑

i< j,k<l

Wi jkl(Hess f ◦Hess f )i jkl

=
1
2

∑
k<l;i, j

Wi jkl(Hess f ◦Hess f )i jkl

=
∑

k<l;i, j

Wi jkl( fik f jl − fil f jk)

=
∑
i, j,k,l

Wi jkl fik f jl.

Next, subduing the summation notation, we integrate by parts,∫
M

Wi jkl fik f jl = −

∫
M
∇iWi jkl fk f jl −

∫
M

Wi jkl fk∇i f jl.

The first term can be written as∫
M
∇iWi jkl fk f jl =

∫
M
∇iWi jkl fk(λg jl − Rc jl)

= −

∫
M
∇iWi jkl fkRc jl = −

1
2

∫
M

(δW) jklMkl j

= −

∫
M
〈δW,M〉 .

Next, we compute the second term,∫
M

Wi jkl fk∇i f jl = −

∫
M

Wi jlk fk∇i(g jl − Rc jl) =

∫
M

Wi jlk fk∇iRc jl

=
1
2

∫
M

Wi jlk fkPi jl = −

∫
M

〈
i∇ f W, P +

Q
2(n − 1)

〉
= −

n − 2
n − 3

∫
M

〈
δW, i∇ f W

〉
=

n − 2
n − 3

∫
M

〈
δW,−P +

M
n − 2

〉
.

It is noted that we have used Corollary 7.3.6 repeatedly to manipulate Q and N.
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To conclude, we combine equations above,∫
M

Wi jkl fik f jl =

∫
M
〈δW,M〉 −

n − 2
n − 3

∫
M

〈
δW,−P +

M
n − 2

〉
=

1
n − 3

∫
M
〈δW, (n − 2)P + (n − 4)M〉 .

If n = 4, then ∫
M

Wi jkl fik f jl =

∫
M

2 〈δW, P〉 =

∫
M

2
〈
δW, P +

Q
6

〉
=

∫
M

2 〈δW, 2δW〉 = 4
∫

M
|δW|2.

�

Remark 7.3.8. The formula in dimension four is also a consequence of the divergence-

free property of the Bach tensor. We omit the details here.

Moreover, in dimension four, we have similar results for W±.

Lemma 7.3.7. Let (M4, g, f , λ) be a GRS, then at each point, we have

0 =
〈
Q±, i∇ f W±

〉
=

〈
Q±, δW±〉 =

〈
N±, i∇ f W±

〉
=

〈
N±, δW±〉 . (7.36)

Proof. It suffices to show the statements is true for the self-dual part.

Let {ei}
4
i=1 be a normal orthonormal local frame and let {αi}

4
i=1 be an orthonor-

mal basis for Λ+
2 . Then〈

Q+, i∇ f W+
〉

=
∑

i

∑
j

Q(αi, e j)W(∇ f ∧ e j, αi)

= − 2
〈
αi(e j),Rc(∇ f )

〉
W(∇ f ∧ e j, αi).

Furthermore, we can choose a special basis, namely the normal form as in (2.14).

Then αi’s diagonalize W+ with eigenvalues λi’s. Consequently,

W(∇ f ∧ e j, αi) = λiαi(∇ f ∧ e j) = λi

〈
∇ f , αi(e j)

〉
.

141



Thus,

〈
Q+, i∇ f W+

〉
= − 2λi

〈
αi(e j),Rc(∇ f )

〉 〈
αi(e j),∇ f

〉
= − 2ηk 〈ek,Rc(∇ f )〉 〈ek,∇ f 〉 ,

for ηk =
∑

i, j:αi(e j)=±ek

λi.

Now by (2.2), it is easy to see that each ηk = 0 because W+ is traceless.

Claim: 〈P+,Q+〉 = −1
4 |∇S|2.

To prove this claim, we choose {αi} as in (2.11) and observe that,

P(α1, e j)Q(α1, e j) =
1
2

P(e12 + e34, e j)Q(e12 + e34, e j)

= − (P12 j + P34 j)
〈
(e12 + e34)e j,Rc(∇ f )

〉
= − (∇1Rc2 j − ∇2Rc1 j + ∇3Rc4 j − ∇4Rc3 j)

〈
(e12 + e34)e j,Rc(∇ f )

〉
.

Similarly,

P(α2, e j)Q(α2, e j) = − (∇1Rc3 j − ∇3Rc1 j − ∇2Rc4 j + ∇4Rc2 j)
〈
(e13 − e24)e j,Rc(∇ f )

〉
,

P(α3, e j)Q(α3, e j) = − (∇1Rc4 j − ∇4Rc1 j + ∇2Rc3 j − ∇3Rc2 j)
〈
(e14 + e23)e j,Rc(∇ f )

〉
.

Thus,

〈
P+,Q+〉 =

∑
i, j

P(αi, e j)Q(αi, e j)

= −
∑

k

ζk 〈ek,Rc(∇ f )〉 ,

for ζk =
∑

i, j:αi(e j)=ek

√
2P(αi, e j) −

∑
i, j:αi(e j)=−ek

√
2P(αi, e j).
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Using (2.2), we can compute,

ζ1 =
√

2
(
P(α1, e2) + P(α2, e3) + P(α3, e4)

)
=∇1Rc22 − ∇2Rc12 + ∇3Rc42 − ∇4Rc32

+ ∇1Rc33 − ∇3Rc13 − ∇2Rc43 + ∇4Rc23

+ ∇1Rc44 − ∇4Rc14 + ∇2Rc34 − ∇3Rc24

=∇1(S − Rc11) − (
1
2
∇1S − ∇1Rc11) =

1
2
∇1S.

Similarly we have ζk = 1
2∇kS. We also have Rc(∇ f ) = 1

2∇S. This proves our claim.

In addition, it is easy to see that

〈
Q+,Q+〉 =

3
2
|∇S|2.

Since δW+ = P+

2 +
Q+

12 , it follows that

〈
Q+, δW+〉 = 0.

The statements involved N follow from analogous calculations as

N(αi, e j) =
〈
αi(e j),∇ f

〉
.

�

By manipulation as in the proof of Theorem 7.0.9, using Remark 7.3.4 (re-

placing Lemmas 7.3.2 and 7.3.3) and Lemma 7.3.7 (replacing Lemma 7.3.6), we

immediately obtain the following result.

Corollary 7.3.8. Let (M, g, f , λ) be a four-dimensional closed GRS. Then we have the

following identity: ∫
M

〈
W+,Rc ◦ Rc

〉
= 4

∫
M
|δW+|2. (7.37)
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7.4 Rigidity Results

In this section, we present conditions that imply the rigidity of a GRS using the

analysis on the framework discussed in the previous section.

First, Proposition 7.4.10 provides a geometrical way to understand tensor

D defined in (7.34). In particular, it says that D ≡ 0 is equivalent to a special

condition, namely, the normalization of ∇ f (if not trivial) is an eigenvector of

the Ricci tensor, and all other eigenvectors have the same eigenvalue. Such a

structure will imply rigidity as the geometry of the level surface (of f ) being

well-described.

On the other hand, Theorem 7.0.9 reveals an interesting connection between

the Ricci tensor and the Weyl tensor in dimension four. That allows us to obtain

rigidity results using only the structure of the Ricci curvature for a GRS.

Theorem 7.4.1. Let (M4, g, f , λ) be a closed four-dimensional GRS. Assume that at

each point the Ricci curvature has one eigenvalue of multiplicity one and another of

multiplicity three, then the GRS is rigid, hence Einstein.

We also find conditions that imply the vanishing of tensor D.

Theorem 7.4.2. Let (Mn, g, f , τ), n > 3, be a GRS. Assuming one of these conditions

holds:

1. i∇ f Rc ◦ g ≡ 0;

2. i∇ f W ≡ 0 and δW(., .,∇ f ) = 0.

Then at the point ∇ f , 0, D = 0.
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Remark 7.4.1. D ≡ 0 can be derived from other conditions such as the vanishing of the

Bach tensor (cf. [18, Lemma 4.1]).

Remark 7.4.2. For GRS’s, condition (2) is a slight improvement of [31], where the

author characterizes generalized quasi-Einstein manifolds with δW = i∇ f W = 0.

In dimension four, the result can be improved significantly.

Theorem 7.4.3. Let (M, g, f , λ) be a four-dimensional GRS. At points where ∇ f , 0,

then W+(∇ f , ., ., .) = 0 implies W+ = 0.

As discussed in the last section, there are some similarities between taking

the divergence and interior product i∇ f of the Weyl tensor, for example, see

Corollary 7.3.6. The following theorem is inspired by condition (1) of Theorem

7.4.2.

Theorem 7.4.4. Let (Mn, g, f , τ), n > 3, be a GRS. Then δ(Rc ◦ g) ≡ 0 if and only if the

Weyl tensor is harmonic and the scalar curvature is constant.

An immediate consequence of the results above (plus known classifications

discussed in the Introduction) is to obtain rigidity results.

Corollary 7.4.5. Let (Mn, g, f , λ), n ≥ 4, be a complete shrinking GRS.

i. If i∇ f Rc ◦ g ≡ 0, then (Mn, g, f , λ) is Einstein;

ii. If i∇ f W = 0 and δW(., .,∇ f ) = 0, then (Mn, g, f , λ) is rigid of rank k = 0, 1, n;

iii. If δ(Rc ◦ g) = 0, then (Mn, g, f , λ) is rigid of rank 0 ≤ k ≤ n.

In particular, when the dimension is four, we have the following result.
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Corollary 7.4.6. Let (M, g, f , λ) be a four-dimensional complete GRS. If

W+(∇ f , ., ., .) = 0,

then the GRS is either Einstein or has W+ = 0. Furthermore, in the second case, it is

isometric to a Bryant soliton or Ricci flat manifold if λ = 0; or is a finite quotient of R4,

S3 × R, S4 or CP2 if λ > 0.

The general strategy to prove aforementioned statements is to use the frame-

work to study the structure of the Ricci tensor.

7.4.1 Eigenvectors of the Ricci curvature

Here we study various interconnections between the eigenvectors of the Ricci

curvature, the Weyl tensor, and the potential function. First, we observe the

following lemma.

Lemma 7.4.7. Let (M, g) be a Riemannian manifold. Assume that, at each point, the

Ricci curvature has one eigenvalue of multiplicity one and another of multiplicity n− 1.

Then we have,

〈W,Rc ◦ Rc〉 = 0.

Proof. Without loss of generality, we can choose a basis {ei}
n
i=1 of TpM consisting

of eigenvectors of Rc, namely Rc11 = η and Rcii = ζ for i = 2, ..., n. Then,

〈W,Rc ◦ Rc〉 =
∑

i< j;k<l

Wi jklRcikRc jl (7.38)

=
∑
i< j

Wi ji jRciiRc j j = ηζ
∑

j

W1 j1 j + ζ2
∑
1<i< j

Wi ji j. (7.39)
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We observe that,

∑
j>1

Wi ji j = −W1i1i, (7.40)

2
∑
1<i< j

Wi ji j =
∑
i>1

∑
j>1

Wi ji j = −
∑

i

W1i1i = 0. (7.41)

The result then follows. �

Next, a consequence of our previous framework (on P, Q, M, and N) is the

following characterization about the condition Rc(∇ f ) = µ∇ f .

Lemma 7.4.8. Let (M, g, f , λ) be a GRS. Then the followings are equivalent:

1. Rc(∇ f ) = µ∇ f ;

2. Q(., .,∇ f ) = 0;

3. M(., .,∇ f ) = 0;

4. δW(∇ f , ., .) = 0;

5. δH(∇ f , ., .) = 0.

Proof. We’ll show that (1)↔ (2), (1)↔ (3), (2)↔ (4), and (2)↔ (5).

For (2) → (1): Let α ∈ Λ2, we have 0 = Q(α,∇ f ) = −2(α(∇ f ),Rc(∇ f )). Since

α can be arbitrary, α(∇ f ) can realize any vector in the complement of ∇ f in T M.

Therefore, Rc(∇ f ) = µ∇ f .

For (1) → (2): Q(α,∇ f ) = −2(α(∇ f ),Rc(∇ f )) = −2(α(∇ f ), µ∇ f ) = 0 because

α(∇ f ) ⊥ ∇ f .

(1) being equivalent to (3) follows from an identical argument as above.
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(2) being equivalent to (4) follows from

δW(X,Y,Z) =
n − 3
n − 2

P(Y,Z, X) +
n − 3

2(n − 1)(n − 2)
Q(Y,Z, X),

P(Y,Z,∇ f ) = − R(Y,Z,∇ f ,∇ f ) = 0.

(2) being equivalent to (5) follows from

δH(X,Y,Z) = − P(Y,Z, X) +
1
2

Q(Y,Z, X),

P(Y,Z,∇ f ) = − R(Y,Z,∇ f ,∇ f ) = 0.

�

Furthermore, the rigidity of these operators Q,M,N is captured by the fol-

lowing result.

Proposition 7.4.9. Let (Mn, g, f , τ), n > 3, be a GRS and T = aQ + bM + cN for some

real numbers a,b,c.

i. Assume that T ≡ 0. If a , 0 then Rc(∇ f ) = µ∇ f ; moreover, if ∇ f , 0 and b , 0,

then all other eigenvectors must have the same eigenvalue;

ii. In dimension four, if T |Λ+
2⊗T M ≡ 0 then T ≡ 0.

Proof. Let {ei}
n
i=1 be an orthonormal basis which consists of eigenvector of Rc

with corresponding eigenvalues λi. Then we have

T (α, ei) = aQ(α, ei) + bM(α, ei) + cN(α, ei)

= −2a 〈α(ei),Rc(∇ f )〉 − b 〈α(∇ f ),Rc(ei)〉 + c 〈α(ei),∇ f 〉

= −2a 〈α(ei),Rc(∇ f )〉 + b 〈∇ f , α(λiei)〉 + c 〈α(ei),∇ f 〉

= 〈α(ei),−2aRc(∇ f ) + bλi∇ f + c∇ f 〉 . (7.42)
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i. Without loss of generality, we can assume ∇ f , 0. Since T (α, ei) = 0 for

arbitrary α and ei,

T (α,∇ f ) = 0 = 〈α(∇ f ),Rc(∇ f )〉 = Q(α,∇ f ).

By Lemma 7.4.8, e1 =
∇ f
|∇ f | is an eigenvector of Rc. Plugging into (7.42) yields,

T (α, ei) = (−2aλ1 + bλi + c) 〈α(ei),∇ f 〉 .

Therefore, −2aλ1 + bλi + c = 0. Hence, as b , 0, all other eigenvectors have the

same eigenvalue.

ii. In dimension four, fix a unit vector ei and note that T (α, ei) = 0 for any

α ∈ Λ+
2 . By Lemma 2.3.1 and Remark ??, T (β, ei) = 0 for all β ∈ Λ−2 . As ei is

arbitrary the result then follows. �

Recall that tensor D is a special linear combination of M,N,Q. Therefore, we

obtain the following geometric characterization.

Proposition 7.4.10. Let (Mn, g), n > 3, be a Riemannian manifold and D defined as in

(7.34). Then the followings are equivalent:

1. D ≡ 0;

2. The Weyl tensor under the conformal change g̃ = e
−2 f
n−2 g is harmonic;

3. Either ∇ f = 0 and Cotton tensor Ci jk = 0, or ∇ f is an eigenvector of Rc and all

other eigenvectors have the same eigenvalue.

Proof. We shall show (1)↔ (2), (1)→ (3) and (3)→ (1).

For (1)↔ (2) : By equation (7.34) and (7.33), we have

Di jk = Ci jk + Wi jkp∇
p f =

n − 2
n − 3

(δW)ki j −W(∇ f , ek, ei, e j).
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Thus, D ≡ 0 is equivalent to

δW(X,Y,Z) −
n − 3
n − 2

W(∇ f , X,Y,Z) = 0.

Under the conformal transofrmation g̃ = u2g (see the appendix), W̃ = u2W,

and

δW̃(X,Y,Z) = δW(X,Y,Z) + (n − 3)W(
∇u
u
, X,Y,Z).

The result then follows from the last two equation.

The statement (1)→ (3) follows from [18, Proposition 3.2 and Lemma 4.2].

For (3) → (1): ∀a, b, c, let T = aQ + bM + cN. For any α ∈ Λ2 and ei a unit

tangent vector, by (7.42), we have

T (α, ei) = 〈α(ei),−2aRc(∇ f ) + bλi∇ f + c∇ f 〉 .

For the tensor D,

a =
−1

2(n − 1)(n − 2)
,

b =
1

n − 2
,

c =
−S

(n − 1)(n − 2)
.

If ∇ f = 0 then T ≡ 0, hence D ≡ 0. If ∇ f , 0, then there exist e1 =
∇ f
|∇ f | and

{ei}
n
i=2, eigenvectors of Rc, with eigenvalues ζ, η, respectively. Then,

T (α, ei) = 〈α(ei), (−2aζ + bη + c)∇ f 〉 .

Since ζ + (n − 1)η = S, with given values of a, b, c above, it follows that

−2aζ + bη + c = 0. Thus, D ≡ 0. �
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Remark 7.4.3. Our formulas are different from [39, 2.19] by a sign convention.

Remark 7.4.4. Under that conformal change of the metric, the Ricci tensor is given by

R̃c =Rc + Hess f +
1

n − 2
d f ⊗ d f +

1
n − 2

(∆ f − |∇ f |2)g

=
1

n − 2
d f ⊗ d f +

1
n − 2

(∆ f − |∇ f |2 + (n − 2)λ)g.

Therefore, at each point, R̃c has at most two eigenvalues. Furthermore, since g̃ has

harmonic Weyl tensor, its Schouten tensor

S̃c =
1

n − 2
(R̃c −

1
2(n − 1)

S̃g̃)

is a Codazzi tensor with at most two eigenvalues. Using the splitting results for Rie-

mannian manifolds admitting such a tensor gives another proof of results in [18]. This

method is inspired by [31].

Now we investigate several conditions which will imply that Rc(∇ f ) = µ∇ f .

Proposition 7.4.11. Let (Mn, g, f , τ), n > 3, be a GRS. Assuming one of these condi-

tions holds:

1. i∇ f W ≡ 0;

2. δW+ = 0 if n = 4.

Then Rc(∇ f ) = µ∇ f .

Proof. The idea is to find a connection of each condition with Lemma 7.4.8.

Assuming (1): We claim that δW(∇ f , ., .) = 0.
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Choosing a normal local frame {ei}
n
i=1, we have:

δW(∇ f , ek, el) =
∑

i

(∇iW)(ei,∇ f , ek, el)

=
∑

i

∇iW(ei,∇ f , ek, el) −
∑

i

W(ei,∇i∇ f , ek, el)

=0 −W(Hess f , ek, el).

Since Hess f is symmetric and W is anti-symmetric, δW(∇ f , ., .) = 0. The re-

sult then follows.

Assuming (2): First recall

δW(X,Y,Z) =
1
2

C(Y,Z, X) =
1
2

P(Y ∧ Z, X) +
1

12
Q(Y ∧ Z, X).

∀α ∈ Λ2
+, since

δW−(X, α) = ∇iW−(ei ∧ X, α) = 0,

we have

δ(W)(X, α) = δ(W+)(X, α) =
1
2

P(α, X) +
1

12
Q(α, X).

Since 0 = R(Y,Z,∇ f ,∇ f ) = −P(Y ∧ Z,∇ f ) and δW+ = 0, hence Q(α,∇ f ) = 0.

The desired statement follows from Lemmas 2.3.1 and 7.4.8.

�

7.4.2 Proofs of Rigidity Theorems

Proof. (Theorem 7.4.1)
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By Lemma 7.4.7, we have ∫
M

W(Rc ◦ Rc) = 0.

Theorem 7.0.9, hence, implies that δW ≡ 0. Then by the rigidity result for har-

monic Weyl tensor discussed in the Introduction, the result follows. �

Proof. (Theorem 7.4.2).

Assuming (1): We observe that

Rc ◦ g(X,Y,Z,∇ f ) =
1
2

Q(X,Y,Z) − M(X,Y,Z).

Therefore, the result follows from Lemma 7.4.9 and Proposition 7.4.10.

Assuming (2): By Proposition 7.4.11, e1 =
∇ f
|∇ f | is a unit eigenvector. Let {ei}

n
i=1

be an orthonomal basis of Rc with eigenvalues λi. By (7.29) and W(∇ f , ., ., .) = 0,

P = −
Q

2(n − 2)
+

M
(n − 2)

−
SN

(n − 1)(n − 2)
.

Thefore,

P(i, j, k) =
|∇ f |
n − 2

[
λ1(δ jkδ1i − δikδ j1) − λk(δ j1δik − δi1δ jk) −

S
n − 1

(δ jkδ1i − δikδ j1)
]

=
|∇ f |
n − 2

(δ jkδ1i − δikδ j1)(λ1 + λk −
S

n − 1
). (7.43)

Using the assumption δW(., .,∇ f ) = 0, we obtain that

(P +
1

2(n − 1)
Q)(∇ f , ., .) = 0.

Combining with (7.43) yields,

P(1, k, k) = −
1

2(n − 1)
Q(1, k, k) =

λ1|∇ f |
(n − 1)

=
|∇ f |
n − 2

(λ1 + λk −
S

n − 1
).
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Thus λ2 = λ3 = λ4 = S−λ1
n−1 . Proposition 7.4.10 then concludes the argument.

�

The proof of Theorem 7.4.4 follows from a similar argument.

Proof. (Theorem 7.4.4)

By equation (7.32), δ(Rc ◦ g) = 0 implies P − Q
2 = 0. Thus, by Lemma 7.3.5,

2|P|2 = 2
〈
P,

Q
2

〉
= −
|∇S|2

2
.

Hence P = 0 = ∇S. It then follows from Corollary 7.3.6 that δW = δS = 0. The

converse is obvious. �

Proof. (Theorem 7.4.3)

Using a normal local frame, we can rewrite the assumption as,∑
i

fiW+
i jkl = 0.

We pick an arbitrary index a and multiply both sides with Wa jkl to arrive at,∑
i

fiW+
i jklW

+
a jkl = 0.

Applying identity (2.15) yields,

0 =
∑

jkl

∑
i

fiW+
i jklW

+
a jkl

=
∑

i

fi

∑
jkl

W+
i jklW

+
a jkl

=
∑

i

fi|W+|2gia = fa|W+|2.

Since index a is arbitrary, we have ∇ f = 0 or |W+| = 0. �
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Proof. (Corollary 7.4.5)

By Theorem 7.4.2 and Theorem 7.4.4, each condition implies D ≡ 0. Then,

[18, Lemma 4.2] further implies that δW = 0. It follows, from classification

results for harmonic Weyl tensor as discussed in the Introduction, that the man-

ifold must be rigid. We now look at each case closely and observe that not all

ranks can arise.

i. In this case, Lemma 7.4.9 reveals that λ0 − λi = 0 with Rc(∇ f ) = λ0∇ f ,

and λi is any other eigenvalue of Rc. Therefore, the manifold structure must be

Einstein.

ii. In this case, since D ≡ 0 implies Rc has at most two eigenvalues with one

of multiplicity 1 and another of n − 1. So k can only be 0, 1, n.

iii. In this case, there is no obvious obstruction, so all rank can arise.

�

Proof. (Corollary 7.4.6)

The statement follows immediately from Theorem 7.4.3, [34, Theorems 1.1,

1.2], and the analyticity of a GRS with bounded curvature [4]. �
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tiver Krümmung. Comment. Math. Helv., 35:47–54, 1961.

[62] Brett Kotschwar. On rotationally invariant shrinking Ricci solitons. Pacific
J. Math., 236(1):73–88, 2008.

160



[63] Nam Q. Le. Blow up of subcritical quantities at the first singular time of
the mean curvature flow. Geom. Dedicata, 151:361–371, 2011.

[64] Nam Q. Le and Natasa Sesum. Remarks on the curvature behavior at the
first singular time of the Ricci flow. Pacific J. Math., 255(1):155–175, 2012.

[65] John M. Lee and Thomas H. Parker. The yamabe problem. Bulletin of the
American Mathematical Society, 17(1):37–91, 1987.

[66] Peter Li and Shing Tung Yau. On the parabolic kernel of the Schrödinger
operator. Acta Math., 156(3-4):153–201, 1986.

[67] Bernhard List. Evolution of an extended Ricci flow system. Comm. Anal.
Geom., 16(5):1007–1048, 2008.

[68] John Lott. Mean curvature flow in a Ricci flow background. Comm. Math.
Phys., 313(2):517–533, 2012.

[69] John Lott and Natasa Sesum. Ricci flow on three-dimensional manifolds
with symmetry. preprint, 2011.

[70] Mario J. Micallef and John Douglas Moore. Minimal two-spheres and the
topology of manifolds with positive curvature on totally isotropic two-
planes. Ann. of Math. (2), 127(1):199–227, 1988.

[71] Mario J. Micallef and McKenzie Y. Wang. Metrics with nonnegative
isotropic curvature. Duke Math. J., 72(3):649–672, 1993.

[72] Reto Müller. Monotone volume formulas for geometric flows. J. Reine
Angew. Math., 643:39–57, 2010.

[73] Reto Müller. Ricci flow coupled with harmonic map flow. Ann. Sci. Éc.
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