eCommons

 

MILLIMETER WAVE TRANSCEIVER FRONTEND CIRCUITS IN ADVANCED SIGE TECHNOLOGY WITH CONSIDERATIONS FOR ON-CHIP PASSIVE COMPONENT DESIGN AND SIMULATLION

dc.contributor.authorWang, Yanxin
dc.date.accessioned2006-06-26T14:59:42Z
dc.date.available2006-06-26T14:59:42Z
dc.date.issued2006-06-26T14:59:42Z
dc.description.abstractA novel design approach for implementing millimeter wave wireless transceiver front-end circuits is proposed. The design methodology takes advantage in advances in Silicon Germanium (SiGe) fabrication technology and sophisticated Electro-Magnetic (EM) simulation software to ensure successful implementation of circuits designed to operate in millimeter wave range. The discussion covers basic circuits common in typical transceiver architecture such as low noise amplifier (LNA), active balun, and mixer. The design methodology is not limited to the above circuits. It can be applied to many other situations where operating frequency is high and the dimensions of passive structures are comparable to signal wavelength. A comprehensive solution to the design of millimeter wave wireless transceiver front-end circuits requires consideration for active devices as well as passive structures. For circuits operating at 94 GHz, 40 GHz and 18 GHz discussed in this dissertation, each design generally has two parts of discussion ? one devoted to circuit design and one devoted to passive design. Optimization of circuit performance and reliability is analyzed in each case. Simulation results from both the circuits and the passives are presented and an integrated simulation environment is proposed to simply the design flow. Some measurement results are provided to confirm the validity of the proposed design methodology. Summaries are given at the end of each chapter and future research direction is highlighted at the end of the dissertation.en_US
dc.format.extent2069529 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.otherbibid: 6475849
dc.identifier.urihttps://hdl.handle.net/1813/3225
dc.language.isoen_US
dc.subjectmillimeteren_US
dc.subjectwaveen_US
dc.subjecttransceiveren_US
dc.subjectcircuitsen_US
dc.subjectsigeen_US
dc.subjectpassiveen_US
dc.titleMILLIMETER WAVE TRANSCEIVER FRONTEND CIRCUITS IN ADVANCED SIGE TECHNOLOGY WITH CONSIDERATIONS FOR ON-CHIP PASSIVE COMPONENT DESIGN AND SIMULATLIONen_US
dc.typedissertation or thesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
willwang_thesis_final.pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format