Code and data from: Characterizing Evaporation Ducts Within the Marine Atmospheric Boundary Layer Using Artificial Neural Networks
No Access Until
Permanent Link(s)
Other Titles
Author(s)
Abstract
Abstract: We apply a multilayer perceptron machine learning (ML) regression approach to infer electromagnetic (EM) duct heights within the marine atmospheric boundary layer (MABL) using sparsely sampled EM propagation data obtained within a bistatic context. EM propagation data is simulated using PETOOL, a MATLAB-based software developed by Ozgun et al. 2011 for solving the split-step parabolic equation approximation of Helmholtz wave equation. Three cases in the data folder correspond to different sparse sampling techniques detailed in our paper. Artificial neural networks are implemented utilizing Tensorflow, and its hyperparameters are selected with grid search. Results for model selection and evaluation can be found in their respective folders. The resulting speed of our ML predictions of EM duct heights, using sparse data measurements within MABL, indicates the suitability of the proposed method for real-time applications.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
Publisher
Keywords
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
software