eCommons

 

Diffusivities, viscosities, and conductivities of solvent-free ionically grafted nanoparticles

dc.contributor.authorHong, Bingbing
dc.contributor.authorPanagiotopoulos, Athanassios
dc.date.accessioned2015-04-23T15:46:23Z
dc.date.available2015-04-23T15:46:23Z
dc.date.issued2013-05-28
dc.description.abstractA new class of conductive composite materials, solvent-free ionically grafted nanoparticles, were modeled by coarse-grained molecular dynamics methods. The grafted oligomeric counterions were observed to migrate between different cores, contributing to the unique properties of the materials. We investigated the dynamics by analyzing the dependence on temperature and structural parameters of the transport properties (self-diffusion coefficients, viscosities and conductivities) and counterion migration kinetics. Temperature dependence of all properties follows the Arrhenius equation, but chain length and grafting density have distinct effects on different properties. In particular, structural effects on the diffusion coefficients are described by the Rouse model and the theory of nanoparticles diffusing in polymer solutions, viscosities are strongly influenced by clustering of cores, and conductivities are dominated by the motions of oligomeric counterions. We analyzed the migration kinetics of oligomeric counterions in a manner analogous to unimer exchange between micellar aggregates. The counterion migrations follow the “double-core” mechanism and are kinetically controlled by neighboring-core collisions.en_US
dc.description.sponsorshipThis publication is based on work supported by Award no. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). Simulations were performed primarily on the Della cluster of the TIGRESS High Performance Computing Center at Princeton University. The authors would like to thank Profs. Emmanuel Giannelis, Lynden Archer, Donald Koch,Fernando Escobedo and Alissa Park for helpful discussions.en_US
dc.identifier.citationHong, Bingbing, and Athanassios Panagiotopoulos. "Diffusivities, Viscosities, and Conductivities of Solvent-free Ionically Grafted Nanoparticles." Soft Matters 28 May 2013: 6091-102. Print.en_US
dc.identifier.urihttps://hdl.handle.net/1813/39914
dc.language.isoen_USen_US
dc.publisherSoft Matteren_US
dc.subjectsolvent-free ionically grafted nanoparticlesen_US
dc.subjectconductive composite materialsen_US
dc.titleDiffusivities, viscosities, and conductivities of solvent-free ionically grafted nanoparticlesen_US
dc.typearticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Diffusivities, Viscosities and Conductivities of Solvent-free Ionically Grafted Nanoparticles.pdf
Size:
943.3 KB
Format:
Adobe Portable Document Format
Description:
Main article