eCommons

 

Global Positioning System measurements of strain accumulation and slip transfer through the restraining bend along the Dead Sea fault system in Lebanon

Other Titles

Abstract

Approximately 4 yr of campaign and continuous Global Positioning System (GPS) measurements across the Dead Sea fault system (DSFS) in Lebanon provide direct measurements of interseismic strain accumulation along a 200-km-long restraining bend in this continental transform fault. Late Cenozoic transpression within this restraining bend has maintained more than 3000 m of topography in the Mount Lebanon and Anti-Lebanon ranges. The GPS velocity field indicates 4-5 mm yr-1 of relative plate motion is transferred through the restraining bend to the northern continuation of the DSFS in northwestern Syria. Near-field GPS velocities are generally parallel to the major, left-lateral strike-slip faults, suggesting that much of the expected convergence across the restraining bend is likely accommodated by different structures beyond the aperture of the GPS network (e.g. offshore Lebanon and, possibly, the Palmyride fold belt in SW Syria). Hence, these geodetic results suggest a partitioning of crustal deformation involving strike-slip displacements in the interior of the restraining bend, and crustal shortening in the outer part of the restraining bend. Within the uncertainties, the GPS-based rates of fault slip compare well with Holocene-averaged estimates of slip along the two principal strike-slip faults: the Yammouneh and Serghaya faults. Of these two faults, more slip occurs on the Yammouneh fault, which constitutes the primary plate boundary structure between the Arabia and Sinai plates. Hence, the Yammouneh fault is the structural linkage that transfers slip to the northern part of the transform in northwestern Syria. From the perspective of the regional earthquake hazard, the Yammouneh fault is presently locked and accumulating interseismic strain.

Journal / Series

Volume & Issue

Description

An edited version of this paper was published in Geophysical Journal International by Blackwell Publishing. Blackwell Publishing retains the copyright to this paper (Copyright 2007). See also: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-246X.2006.03328.x; http://atlas.geo.cornell.edu/deadsea/publications/Gomez2007_GJI.htm

Sponsorship

Date Issued

2007

Publisher

Blackwell Publishing

Keywords

Global Positioning System (GPS); Lebanon; Dead Sea fault system; Crustal deformation; Neotectonics; Transform faults

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Geophysical Journal International, vol. 168, p. 1021-1028, 2007

Government Document

ISBN

ISMN

ISSN

0955-419X

Other Identifiers

Rights

Rights URI

Types

periodical

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record