The off-specular peak and polarisation effects of an undulating underwater suface
No Access Until
Permanent Link(s)
Other Titles
Author(s)
Abstract
Periodic undulations are used to describe underwater bottom roughness. An expression of the bi-directional reflectance distribution function (BRDF) is given that is dependent on the given roughness metric. Highlights include an off-specular peak and polarisation effects. For an undulating underwater surface, we have shown through geometric optics that reflectance from a rough diffuse surface increases as the viewing direction approaches the backward direction even in the absence of shadowing and/or self-shading (Clavano & Philpot (2003), see also Cox & Munk (1956)). The effects of shadowing and self-shading are equivalent to applying a geometrical attenuation factor to specular reflectance, which is similar to an analysis of morphological effects using triangular waves by Zaneveld & Boss (2003). We show that a reflectance peak displaced away from the specular direction occurs at large angles of incidence (relative to the global normal) as the surface gets rougher (part of work in Clavano & Philpot (2004)). Similar results have been shown for oil films on ocean surfaces using Monte Carlo methods by Otremba & Piskozub (2004) and Otremba (2004). As a general result, an expression of the full bi-directional reflectance distribution function (BRDF) is given. While geometrical effects play a significant role in the reflectance distribution, we consider polarisation effects (as in Mullamaa (1962, 1964)) to gain more insight into real-world reflectances and compare with empirical distributions described by Cox & Munk (1956).
Journal / Series
;St. Petersburg, Russia