Symmetry, Nonlinear Bifurcation Analysis, and Parallel Computation
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
In the natural and engineering sciences the equations which model physical systems with symmetry often exhibit an invariance with respect to a particular group "G" of linear transformations. "G" is typically a linear representation of a symmetry group "g" which characterizes the symmetry of the physical system. In this work, we will discuss the natural parallelism which arises while seeking families of solutions to a specific class of nonlinear vector equations which display a special type of group invariance, referred to as equivariance. The inherent parallelism stems for a global de-coupling, due to symmetry, of the full nonlinear equations which effectively splits the original problem into a set of smaller problems. Numerical results from asymmetry-adapted numerical procedure, (MMcontcm.m), written in MultiMATLAB are discussed.