eCommons

 

Data from: How large is the design space for stratospheric aerosol geoengineering?

dc.contributor.authorZhang, Yan
dc.contributor.authorMacMartin, Douglas G.
dc.contributor.authorVisioni, Daniele
dc.contributor.authorKravitz, Ben
dc.date.accessioned2021-08-23T16:59:58Z
dc.date.available2021-08-23T16:59:58Z
dc.date.issued2021-08-23
dc.descriptionPlease cite as: Yan Zhang, Douglas G. MacMartin, Daniele Visioni, Ben Kravitz. (2021) Data from: How large is the design space for stratospheric aerosol geoengineering? [Dataset] Cornell University eCommons Repository. https://doi.org/10.7298/f1e4-sq40en_US
dc.description.abstractData in support of research: Stratospheric aerosol injection (SAI), as a possible supplement to emission reduction, has the potential to reduce some of the risks associated with climate change. Adding aerosols to the lower stratosphere results in global cooling. However, different choices for the aerosol injection latitude(s) and season(s) have been shown to lead to significant differences in regional surface climate, introducing a design aspect to SAI. Past research has shown that there are at least three independent degrees of freedom (DOF) that can be used to simultaneously manage three different climate goals. Knowing how many more DOFs there are, and thus how many independent climate goals can be simultaneously managed, is essential to understanding fundamental limits of how well SAI might compensate for anthropogenic climate change, and evaluating any underlying trade-offs between different climate goals. Here we quantify the number of meaningfully-independent DOFs of the SAI design space. This number of meaningfully-independent DOFs depends on both the amount of cooling and the climate variables used for quantifying the changes in surface climate. At low levels of global cooling, only a small set of injection choices yield detectably different surface climate responses. For a cooling level of 1-1.5℃, we find that there are likely between 6 and 8 meaningfully-independent DOFs. This narrows down the range of available DOF and also reveals new opportunities for exploring alternate SAI designs with different distributions of climate impacts.en_US
dc.description.sponsorshipWe would like to acknowledge high-performance computing support from Cheyenne (https://doi.org/10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. Support for Y. Zhang and D. G. MacMartin was provided by the National Science Foundation through agreement CBET-1818759 and CBET-2038246. Support for D. Visioni was provided by the Atkinson Center for a Sustainable Future at Cornell University. Support for B. Kravitz was provided in part by the National Science Foundation through agreement CBET-1931641, the Indiana University Environmental Resilience Institute, and the Prepared for Environmental Change Grand Challenge initiative. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DEAC05-76RL01830. The CESM project is supported primarily by the National Science Foundation.
dc.identifier.doihttps://doi.org/10.7298/f1e4-sq40
dc.identifier.urihttps://hdl.handle.net/1813/104261
dc.language.isoen_USen_US
dc.relation.isreferencedbyZhang, Y., MacMartin, D. G., Visioni, D., & Kravitz, B. (2022). How large is the design space for stratospheric aerosol geoengineering? Earth System Dynamics, 13(1), 201–217. https://doi.org/10.5194/esd-13-201-2022
dc.relation.isreferencedbyurihttps://doi.org/10.5194/esd-13-201-2022
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectgeoengineeringen_US
dc.subjectclimate engineeringen_US
dc.subjectstratospheric aerosol injectionen_US
dc.subjectdesign spaceen_US
dc.titleData from: How large is the design space for stratospheric aerosol geoengineering?en_US
dc.typedataseten_US
schema.accessibilityHazardnoneen_US

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
Zhang_etal_2021_ESD_README.txt
Size:
3.33 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
Zhang_ESD2021.zip
Size:
56.59 MB
Format:
Data Compression Utility
Description: