eCommons

 

Data from: Earthquake rupture interactions with a high normal stress bump

dc.contributor.authorCebry, Sara B. L.
dc.contributor.authorSorhaindo, Kian
dc.contributor.authorMcLaskey, Gergory C.
dc.date.accessioned2023-06-21T20:37:51Z
dc.date.available2023-06-21T20:37:51Z
dc.date.issued2023-06-21
dc.description.abstractThese files contain data supporting all results reported in Cebry et al. Earthquake rupture interactions with a high normal stress bump. In Cebry et al. we found: To better understand how normal stress heterogeneity affects earthquake rupture, we conducted laboratory experiments on a 760 mm PMMA sample with a 25 mm “bump” of locally higher normal stress. We systematically varied the sample-average normal stress and bump prominence. For bumps with low prominence (bump normal stress over sample average normal stress < 6) the rupture simply propagated through the bump and produced regular sequences of periodic stick-slip events. Bumps with higher prominence (>6) produced complex rupture sequences with variable timing and ruptures sizes, and this complexity persisted for multiple stick-slip supercycles. During some events the bump remained locked and acted as a barrier that completely stopped rupture. In other events, a dynamic rupture front terminated at the locked bump, but rupture reinitiated on the other side of the bump after a brief pause of 0.3-1 ms. Only when stress on the bump was near critical did the bump slip and unload built up strain energy in one large event. Thus, a sufficiently prominent bump acted as a barrier (energy sink) when it was far from critically stressed and as an asperity (energy source) when it was near critically stressed. Similar to an earthquake gate, the bump never acted as a permanent barrier. In the experiments, we resolve the above rupture interactions with a bump as separate rupture phases; however, when observed through the lens of seismology, it may appear as one continuous rupture that speeds up and slows down. The complicated rupture-bump interactions also produced enhanced high frequency seismic waves recorded with piezoelectric sensors.en_US
dc.description.sponsorshipNational Science Foundation grant EAR-1847139en_US
dc.identifier.doihttps://doi.org/10.7298/0bdb-t883
dc.identifier.urihttps://hdl.handle.net/1813/113268
dc.language.isoen_USen_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectlaboratory earthquakeen_US
dc.subjectbarrieren_US
dc.subjectasperityen_US
dc.subjectrupture interactionen_US
dc.subjectearthquake gateen_US
dc.titleData from: Earthquake rupture interactions with a high normal stress bumpen_US
dc.typedataseten_US

Files

Original bundle
Now showing 1 - 4 of 4
No Thumbnail Available
Name:
CebrySorhaindoMcLaskey_JGR2023_README.rtf
Size:
69.85 KB
Format:
Rich Text Format
Description:
No Thumbnail Available
Name:
CebrySorhaindoMcLaskey_JGR2023_DIC_Benchmark_tests.tar
Size:
93.6 MB
Format:
Tape Archive Format
Description:
No Thumbnail Available
Name:
CebrySorhaindoMcLaskey_JGR2023_DIC_experiment.tar
Size:
647.8 MB
Format:
Tape Archive Format
Description:
No Thumbnail Available
Name:
CebrySorhaindoMcLaskey_JGR2023_Experiments.tar
Size:
141.23 MB
Format:
Tape Archive Format
Description: