eCommons

 

G2. Snippets from Infiltration: Where Approximate Becomes Exact

dc.contributor.authorBroadbridge, Philip
dc.date.accessioned2012-07-20T17:51:37Z
dc.date.available2012-07-20T17:51:37Z
dc.date.issued2012-05
dc.descriptionOnce downloaded, these high definition QuickTime videos may be played using a computer video player with H.264 codec, 1280x720 pixels, millions of colors, AAC audio at 44100Hz and 29.97 frames per second. The data rate is 5Mbps. File sizes are on the order of 600-900 MB. (Other formats may be added later.) Free QuickTime players for Macintosh and Window computers may be located using a Google search on QuickTime. The DVD was produced by J. Robert Cooke.en_US
dc.description.abstractThe Darcy-Buckingham macroscopic approach to soil-water modelling, leading to a nonlinear Richards’ diffusion-convection equation, has been very useful for many decades. Some sharp results of the 1970s by W. Brutsaert and J.-Y. Parlange have been an influence on many, including myself. Since the 1980s, several groups have used an integrable one-dimensional version of Richards’ equation, with realistic nonlinear transport coefficients, to predict experimentally verifiable quantities. Neat expressions have been derived for time to incipient ponding, for the dependence of sorptivity on pond depth and for the second and higher infiltration coefficients. These exact results are at odds with those of the traditional Green-Ampt model. In the limit of delta-function diffusivity, the water content profile approaches a step function, so the water content is everywhere close to either the boundary value or the initial value. As explained by Barry et al (1995), far from there being a unique “Green-Ampt limit”, practical predictions in the limit of a delta function diffusivity depend subtly on the relationship between diffusivity and conductivity at intermediate values of water content. In fact, the traditional Green-Ampt predictions, with a constant potential at the wet front, may be recovered from a linear, rather than step-function behaviour of conductivity vs water content. A number of practical predictions of the integrable model agree exactly with those of the approximate analytic method originated earlier by Parlange, involving approximations within an integrand after expressing the water conservation equation in integral form. The exactly solvable model refutes the traditional Green-Ampt model and validates the quasi-analytic integral formulation.en_US
dc.description.viewer1_g813feceen_US
dc.identifier.urihttps://hdl.handle.net/1813/29570
dc.publisherInternet-First University Pressen_US
dc.subjectUnsaturated flowen_US
dc.subjectinfiltration coefficientsen_US
dc.subjecttime to pondingen_US
dc.subjectponded sorptivityen_US
dc.titleG2. Snippets from Infiltration: Where Approximate Becomes Exacten_US
dc.typevideo/moving imageen_US

Files

Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
G2_Broadbridge_SLIDES.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format
Description:
PDF of slides used in the lecture
No Thumbnail Available
Name:
G2_Broadbridge_Infiltration_SD for_Apple_Devices.m4v
Size:
180.98 MB
Format:
iTunes Video
Description:
Download small version of Video
No Thumbnail Available
Name:
G2_Broadbridge_Infiltration-HD_for_Apple_Devices_5Mbps.m4v
Size:
549.54 MB
Format:
iTunes Video
Description:
Download HD Video for Apple Devices