Isolation and Purification of ClearColi Outer Membrane Vesicles with mutant Transferrin-Binding Protein B
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
Escherichia coli outer membrane vesicles (eOMVs) have potential as vaccine delivery systems. A possible constraint is their lipopolysaccharide (LPS) content, sometimes causing toxic effects in vivo. Here, I explore the ability of eOMVs from ClearColi, a genetically engineered strain of E. coli with only the lipid IVa portion of lipopolysaccharide (LPS), to be used as a vaccine delivery system. I investigate whether these OMVs that do not stimulate TLR4 can be used to express a surface-exposed protein. Transferrin-binding protein B (TbpB), a surface-exposed protein, is a potential vaccine candidate for Glaesserella parasuis due to its conservation across multiple serotypes. A major drawback of current G. parasuis vaccines is their failure to generate a cross-protective immune response and prevent Glässer’s disease. In our laboratory, I have applied engineered ClearColi to express a mutant TbpB. This study found that ClearColi could express the surface exposed mutant TbpB in the eOMV. Additionally, various methods were used to characterize ClearColi expressed OMVs (eOMVs); these included Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blot analysis (WB), and transmission electron microscopy (TEM) imaging. The eOMVs reported here represent a potentially safer and better cross-protective vaccine platform against G. parasuis for the prevention of Glässer’s disease. The methods here also present additional knowledge to the development of safe and straightforward vaccine delivery platforms using ClearColi outer membrane vesicles.