eCommons

 

Inactivation Of Microorganisms In Skim Milk And Shredded Mozzarella Cheese Using High Pressure Carbon Dioxide And Nitrous Oxide

Other Titles

Abstract

Inactivation of microorganisms with high-pressure carbon dioxide (HP-CO2) is emerging as an innovative process for the sterilization of biological materials. However, its application in milk processing poses a challenge since CO2-induced reduction in pH may lead to casein precipitation. High-pressure nitrous oxide (HP-N2O) has been suggested as an alternate choice for the processing of fluid milk. Agitated supercritical carbon dioxide (Sc-CO2) at 10.3 MPa and 35°C with 100 ppm peracetic acid (PAA) resulted in a complete 8- and 5-log10 inactivation of Escherichia coli and Bacillus atrophaeus spores in thin milk-films after 15 and 40 min, respectively. The treatment also resulted in partial milk-protein coagulation (55%) and thus possible applications of this approach may be in those processes where curd formation from sterile milk is beneficial. The HP-CO2 treatment at 10.3 MPa with 50 ppm PAA resulted in 2.6-, 5.4- and 9.2-log10 reductions of E. coli in agitated bulk milk after 120 min at 5, 15 and 25°C, respectively, whereas a 0.7-log10 reduction of B. atrophaeus spores was obtained at 25°C. The Fermi model was used to describe the inactivation kinetics of E. coli and B. atrophaeus. This strategy should be attractive for low-temperature ([LESS-THAN OR EQUAL TO]25°C) pasteurization of fluid milk. A 20-min treatment of skim milk with added nisin (150 IU/mL) using HP-N2O (15.2 MPa and 65°C) resulted in 8- and 8.6-log10 reductions of E. coli and Listeria innocua, respectively. ! Meanwhile, a 2.5-log10 inactivation of B. atrophaeus spores was obtained when lysozyme (50 [MICRO SIGN]g/mL) was also added and the temperature was increased to 85°C. There were no significant changes in the physico-chemical properties of the treated milk and no sub-lethally injured cells were detected following the treatment. Agitated Sc-CO2 at 9.8 MPa and 35°C with 100 ppm PAA synergistically resulted in the inactivation of major microbial groups in shredded Mozzarella cheese after 30-min of treatment. A >5-log10 reduction in the populations of E. coli, L. innocua, yeasts & molds and the total bacterial counts along with a 4-log10 reduction of Geobacillus stearothermophilus spores was achieved during storage for 21 days at 25°C. !

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2016-05-29

Publisher

Keywords

supercritical carbon dioxide; peracetic acid; spores inactivation

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Rizvi,Syed S H

Committee Co-Chair

Committee Member

Moraru,Carmen I
Caffarella,Rosemary S.

Degree Discipline

Food Science and Technology

Degree Name

Ph. D., Food Science and Technology

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record