eCommons

 

Antropogenic And Natural Pyrogenic Carbon In Tropical Environments: From The Rhizosphere To The Landscape

Other Titles

Abstract

Despite an increasing body of literature, the interactions of pyrogenic carbon (PyC) in the environment are not as well understood as other forms of C. This dissertation focused on generating knowledge of the interactions of (PyC) in tropical terrestrial ecosystems. Main areas of concentration include 1. Investigations into the mechanisms driving increased biological nitrogen fixation (BNF) in common bean (Phaseolus vulgaris) following the additions of anthropogenic PyC to agricultural soil, 2. Evaluating the differing ability of pyrolyzed and non-pyrolyzed crop residues to protect introduced strains of rhizobium against soil water deficit, and 3. Tracing the movement of natural PyC through the landscape and waterways following land-use change from forested ecosystems to intensive agricultural lands. Biological N fixation and nodule biomass increased by up to twenty-fold and thirty six-fold, respectively, following additions of anthropogenic PyC. This change was linked to greater plant-P uptake (r2=0.22; P<0.0001, n=201). However, plant P uptake was not correlated with biochar P additions (P>0.05). Improved P nutrition likely resulted from 360% greater mycorrhizal colonization with biochar additions. When microbial inoculants were introduced to soil using pyrolyzed and non-pyrolyzed biomass, DNA fingerprinting of the root nodules indicated that nodule occupancy was dominated by native rhizobium and not the introduced strain. However, measured nodule occupancy (1-38%) of the introduced CIAT899 rhizobial strain by beans was significantly greater than expected values based on application rates (2-7%), irrespective of carrier. When natural terrestrial PyC was traced in stream water catchments following land-use change, up to 60% losses of the initial PyC stocks occured in the first 10 years after conversion from forest from mineralization and/or erosion. However, PyC was not preferentially eroded relative to total C or non-PyC C. This was true even when scaled to the entire river watershed where PyC concentrations in the headwaters and outlet into Lake Victoria were 3.8 and 3.5% of total C, respectivley . Pyrogenic C enrichment was found with depth in the soil profile from 5% of OC in the topsoil (0-0.15 m) to 23% of OC at 1-2 m.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2015-01-26

Publisher

Keywords

Biochar; Pyrogenic carbon; Tropical agriculutre

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Lehmann, Christopher Johannes
Lehmann, Christopher Johannes

Committee Co-Chair

Committee Member

Riha, Susan Jean
Lee, David R
Walter, Michael Todd

Degree Discipline

Soil and Crop Sciences

Degree Name

Ph. D., Soil and Crop Sciences

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record