eCommons

 

CARBON IN RIPARIAN SUBSURFACE ECOSYSTEMS: SOURCES, LABILITY, AND SPATIAL PATTERNS

Other Titles

Abstract

Numerous studies suggest that denitrification in riparian zones removes nitrogen from groundwater as it moves from terrestrial to aquatic ecosystems. However, removal rates vary widely among sites complicating the incorporation of riparian zones into models of nitrogen movement across landscapes. Because denitrification in the riparian subsurface is often limited by the supply of microbially-available carbon, explaining how and why carbon supply varies among riparian zones using mappable landscape attributes holds practical and theoretical appeal. First principles suggest three carbon sources for subsurface microbes: (1) dissolved organic carbon leached from surface soils; (2) deep plant roots; and (3) buried, carbon-rich soil horizons deposited long ago. Working in Rhode Island USA at riparian zones mapped as outwash and alluvium, I investigated the relative importance of different carbon sources to 3 meters depth.

Field and laboratory experiments showed that both roots and buried horizons can supply carbon in the shallow subsurface (40-75 cm), but that buried horizons dominate below 75 cm. Radiocarbon dates and results from ingrowth cores showed that roots 40-75 centimeters deep grow and decompose on decadal time scales and form patches of organic matter that may influence nitrogen removal from groundwater. However, in both alluvial and outwash profiles, most roots below 80 cm are relics (usually > 140 years old) and therefore do not act as direct carbon conduits between the surface and deep subsurface. Laboratory incubations of buried soils from many sites demonstrated that high rates of carbon mineralization associated with these soils are common. In-situ groundwater incubations and 14C dating demonstrated that metabolism of ancient carbon constitutes at least 31% of total carbon mineralization >2 meters below the surface at some sites.

My results suggest that: (1) the depth of the biologically active zone extends as deep as buried horizons; (2) on outwash and alluvium the riparian surface and subsurface are largely decoupled on time scales of months to years; (3) functional classifications of riparian zones intended to support management need to include buried horizons and recognize the limited influence of surface vegetation on subsurface biogeochemistry over short time frames.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2006-10-31T14:06:56Z

Publisher

Keywords

riparian zone; stream ecosystem; groundwater; biogeochemistry; eutrophication; alluvium; Rhode Island; hyporheic; radiocarbon; soil carbon; hydrogeology; denitrification; subsurface; microbial ecology; lithology; carbon mineralization; carbon cycle; nitrogen cycle; hydrogeomorphic setting; watershed; hot spot; root production; deep roots; microsites

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record