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ABSTRACT
A matrix S 1s a solvent of the matrix polynomial

MOO = xXT 4 A X" e e A,

if M(S) = 0, where Ai’ X and S are square matrices. We
present some new mathematical results for matrix polynomials,
as well as a globally convergent algorithm for calculating
such solvents.

In the theoretical part of this paper, existence
theorems for solvents, a generalized division, interpolation,
a block Vandermonde, and a generallzed Lagrangian basis are
studied.

Algorithms are presented which generalize Traub's
scalar polynomial methods, Bernoulli's method,and eigenvector
powering.

The related lambda-matrix problem, that of finding

a scalar X such that

is singular, is examined along with the matrix polynomial
problem.

The matrix polynomlal problem can be cast into a
block eigenvalue formulation as follows. Given a matrix A of
order mn, find a matrix X of order n, such that AV = VX,
where V 1s a matrix of full rank. Some of the implications

of this new block eigenvalue formulation are considered.
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CHAPTER I

Intrcduction

In this chapter we state the problem, give scme c¢?
the definitions, present the major results of the papsr, and

outline the entire dissertation.

1.1 Preliminaries. Algorithms for the solution of the scalar
polynomial problem, x™ + a1xm_l + s + a, = G, have teccome
extremely efficient. See Traub [20,21] and Jenkins and Traub
[7,8]. A generalization of the scalar polynomial is giver by
the following.

Definition 1.1 Given n by n matrices Ao’A1""’Ar
-_— - i

polynomial M(X) is the matrix function

m-1

mn
N
B
+
=
>

M(X) + see + A (

)
-
~

in the n by n matrix varispbie X.

If Ao 1s nonsingular, then the monic matrix polyncmial is

=i
—~
tad
(o2
1]

azhux). (1.2)

Two generalizaticns of the rcots ¢f a scalar poly-
nomial are to be examined. The first one, the majcr emphrasis
of this work, is classicel. Little is known, however, about

cxlstence and calculation of such rocots cf matrix polynomials.
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Definition 1.2 A matrlx S i1s a soivent of the matrix poly-

M(S) = 0. (1.3)
Defi n 1.2 A matrix Wis a weak sclvent of the matrix
poivnomial M(X) if
det M(W) = OC. (1.4)

A srecilal case of the weak sclvent prcblem is the

important lambda-matrix problem. Restrlcting the class of

m

weax sorvents %o scalar masrices, AL, and using the notatiocn
3 > >

M{A) = M(AI), the

m5da-m2trix pretlem is that of finding

a scalar X such that
%) =AOA’“+AA””1+ cee 2 A (1.5)

is singular. Such a scalar is called a latent rocot of M(A)

ané vectors b ané r are right and left latent vectcrs, respec-

tively, if, for a2 latent root p, M(o)b =0 and r M(p) = C.
(1) in equation (1.5) is an n by n matrix whose elements are
scalar polynomials in A. See Lancaster [13], Gantmacher {23,
MacDuffee [151, and Peters and Wilkinson [17] for a complete
scussicn of lambda-matrices. A description of some of the
present methods of solving the lambda-matrix problem 1s found

in Appendix B.
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Only monic matrix polynomials are studled in the
main part of this dissertation. The case of the ncnmonic
matrix polynomZal, and where AO is singular, will be consicd-

ered in Appendix A. If AO is nonsingular, the monic matri

polyncmial F(X) can be obtained by the solution of several
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Hence, we consider

MX) = X+ Ale—l LRIEI (1.6)

The following are some well-known results that wiil
be frequently used. They may all be found in Lancaster {133.

A corollary of Bézout's theorem states that if S is

a solvent of M(X) then

M(X) = Q(A)(IA-S), (

bes
~1
~-

where Q{A) is a monic lambda-matrix of degree m-1. Another

H

esult is

ct

hat the lambda-matrix M(A) has mn latent roots,
and hence, 1t follows imnmediately from (1.7) that the n
eigenvalues of & solvent are all latent roots of the lambda-~

matrix. Furthermore, the n(m-1) latent roots of Q(A) are

also latent roots of M(A).

If one 1s interested in the solution of a liambda-

matrix problem, then a solvent will provide n latent roots

and can be used for a matrix deflation, which yields the new

preblem Q(A).
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1.2 Main Results of this Paper.

cipal results of this work. Ther

The

ry

undamental Theoren
polynomlal has at least one zero,
matrix polynomials.

no solvents {Theorem 2.6).

The fcllowing are the prin-

will be proved in later

It 1s useful to have a concept of a matrix poly-

normial with a complete set of solvents.
“h

zaticn cf an n

This 1s a generali-

degree scalar polynomial having n roots.

Definltion 1.4 A set of m solvents cf I4(X) is 2 complete set

of scivents, if the set of mn elgenvalues of the m solvents
is the same, zounting multiplicities, 2s the set of ma latent

Thus, 1in the special case of M{A) having mn dis-

tinct latent roots, a complete set of m solvents must have

no commen elgenvalues and each solvent must have distinct

eigenvalues.

We consider a generalization of the scalar

Vandermcnde matrix.

Cefinition 1.5 Given n by n matrices S

ot

o

s***,3_, the block

1 m

5

]
3

o

-
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V(S ,eu8) = : : (1.8}
m=-1 m-1 ﬂ:—li
Sl 52 °m ‘

It will be shown in Chapter U.that it 1s not suffi-
cient that matrices Sl,“-,Sm have distinct and dislcint
elgenvalues for V(Sl,~--,Sm) to be nonsingular.

Existence of a complete set of solvents for the

important special case of the lambda-matrix having distinct

latent roots is given by the following theoren (Thecrem &.1).

Theorem If M(A) has distinct latent roots, thexn 1(¥) nas 2z

complete set of soivents, sl,---,sm, and V(Sl,-'~,Smi is neon-
singular.
Definition 1.6 A solvent of M(X) is a dominant scivent 1

ot

the n eigenvalues of

hls solvent are strictly the n largest

latent roots of M(}).

Algorithm 1, presented below and agaln in Chapter 5,
attempts to find a dominant solvent of M(X). It is a gener-
alization of one due to Traub [21] for scalar polynomizls.
The algorithm has two stages. The first, a generalization of
Sebastiao e Silva's algorithm (see Householder [4]), generates
a sequence of matrix polynomials, all of degree less than m.

Then the last two matrix polynomials of the generated
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sequence arz used 1n a matrix lteration which is to converge

to a dominant sclvent.

n
H
m
3
u

(1) Let G (3
(1) Le G (x)

G_,.(X)

!
Q
o3
—~
>
B

- u‘l‘z«;(:x:), (1.9)

n+l
for n = 0,1,*+-,L-1, where
n.m-1 n A1)
Gr(x) = olX e bl (1.10)

~

[
-
~
c

i
<t
tad

it

Q

6l (x,) (1.11)

Ccnvergence of this algorithm is established for a
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(X) is the unigue monic matrix polynomial of

4 l Ao dlas
degree m-1 with soivents 52,°'°,S", but not Sl’ and
(11) for L suffictently large X, of eguation (1.11} ceon-

It will be shown (Corollary 5.2 and Lemma 5.7) thet
each stage of the algorlithm 1s linearly convergent. Let ¢ be
the absolute value of the ratio of the smallest elgenvaiue of
Sl and the largest remaining latent root of

asymptotic error ccnstants of the first and

¢,0 and czoL_l, respectively, where o0 <1 and L 1s the num-
ber of iteraticns of the first stage before switching tc the
seccnd stage. Thus, the seccnd stage, though linearly con-
vergent, can be made arbitrarily fast by increasing
ner of iterations of the first stage. In the computaticnal
algorithm, we pick an arbitréry L and then examine the second
stage. If it is converging too slowly (or diverging), then

the first stage is resumed for several steps and th

@
s
i
le]
Ie}
m
n
7

is continued. Thus, given that the three hypotheses cf the
above theorem are satisfied, this process, in exact arithmetic,
is guaranteed to yield a solvent of the matrix polynomial.

If a dominant solvent does not exist, then

ct

he alge-
rithm will not yield a solvent. In addition to the results in
the above theorem, the first stage ylelds a dominant latent
root, if one exists. Consider the following algorithm which

obtains a deminant latent root (Chapter 7).
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Definltion 1.7 Given vectors vo,vl,---,v of dimension n, a

iambda-vector g(A) is the vector function

Als is anocther generallzation of Traub's scalar
polynomial algorithm. For a vector v, denote by max v the
first element of v which has the maxinum absolute value.

Ncte that max v is not a norm. Then a convergence thecrem

for the algorithm is as follcows (Theorenm 7.1).

. mn
(12} o, > [pil for 1 # 1, and
pigsy T ) T T
ii1z) Plgo(oj) # 0, where r,m(pl) =05,
then
- g (X) N
(1) gy = —Emy e ALy e nGop0n, - 0




r -9 -
L )
o
. +
? Vi) - pyvi™ -
i (1) —=———2— - 0. (1.15)
max v.
3 b
- 2
The transpose of any column of equation (1.9) with
= L]
‘ } X = AI, 1s precisely equation (1.13), with MY (A replacing
1 + M(A). Since the latent roots of M'(X) are the same as these
¥

| of M(1), a dominant latent root.of M(A) can be obtained from

equation (1.15) by Algorithm 1, the matrix polynomial solvent

! algorithm. This can be done regardliess of whether a cdominant

b
o solvent, or any solvent at all, exists.
i

E ; 1.3 QOutline of the Remainder of the Paper. Thils paper con-

H talns three intertwined yet distinct subjects. They are

i
- (

~
3
@
=

1 theoretical results cn matrix polynomials,

(11) 2ligorithnms for solvents ard latent rcots, and

LI
P

| (1i1) a new block elgenvalue problem.

&
o

Chapter 2 considers the basic properties of soi-

- - vents. The existence of solvents and facterization of lambda-
e K
N i - matrices are considered here. A generalization of Bézcut's
I
- b Theorem and the relationship between polyncmial coefflcients
e, o
! and the elementary symmetric functions are also discussed.
s N
/ 1 In Chapter we present scme of the basic prcper-
- | .d
o N ties of matrix polynomials. Interpolation, representation
- .~ theorems and fundamental matrix polyncmials are presented in
~ ] this chapter.
.
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Prcperties of the block Vandermonde matrix are glven
in Chapter 4.
The second major zrea of this dissertation concerns
itself with algorithms for finding solvents and latent roots.

Chapter 5 prezents lgorithm 1, the mzin elgerithm cf trne

*

a2per. The method finds solvents and is a generalizeticn of

el

&)

raub's scalar polynemial methods [21l. A convergence

A block Bernoulll method is Cescribed in Chapter 6.
The relation between this method and Algorithm 1 is discussed.
In Chapter 7 we Present Algorlthm 2, which finds a

dominant latent roct. The key result is given - the computa-

tions of Algori<hm 2 are done by Algorithm 1. A vector

The third area of this work is a new block eigen-
value problem. It is that of findirg a2 matriz X of order n

guch that for given matrix 4 of orde- mr, the equation

deals with this problem. It is chown that when A is the
block companion matrix, this protlem i1s a generalization of
the matrix polynomial solvent problem. A general theory of

lock elgenvalues as well as two algorithms tased on eigen-
vector powering are offered.

Chapter 9 describes numerical testing of Algorithms

>

1 and 2.
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CHAPTER 2

Solvents

+In this chapter we study some of the prorerties of
solvents. Sectlon 2.1 considers a division of masrix Ccly-
nomials which results in a new derivation and generalilfzation

of Bézout's theorem. Section 2.2 examines the bl

« )
O
ey
0
o

1
k)
m
o

1

"
b
(29
[
~
5
[oN)
oS
o]

ion matrix. 2Principal vectors of solvents are cons

3
(8]
o)

Section 2.3. The existence of solvents and factorizaticn

lambda-matrices are both dealt with in Sectlon 2.4.

2.1 Generalized Division. The class of matrix polynomials

1s not closed under multiplication or division. Ccnsider the
procuct of N(X) = X+ N and L(X) =X + L. We get

ML) = (X#X)(X+L) = X% + NX + XL + NL which is not of
the general form of 2 matrix polynomial; X2 + AJX + A A

5
4
1

new operation will be defined for matrix polynomials which

willl reduce to division in the scalar case; n = 1,

Theorem 2.1 Let M(X) = X" + AlY + oeee ¢+ /ﬂ.,_l and

W) = xP e BT a el B, ®ith m > p. Then thers

exlsts a unigue, monic matrix polynomial F(X) of degzree m-p

)

and a unique matrix polyncmial L{X) of degree p-1 such that

M) = FOOXP + B RO 4 ee 4 BF(X) + L{X), (2.1)
Proof: Let F(X) = x™P 4 p x™mP-1, ... , ¢ and
1 m=-p
-ty -1 -
O e N T Loy~ Equating
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coefficlents of equation (2.1), F,,F_,+++,F and
1’72 m-p

Lo,Ll,“-,Lp_1 can te successlvely and uniguely

Getermined from the m eguations. #

Equation (2.1) Is the matriyr pclvnonlal division of

¥(X) by W{(X) with quotient F(X) and remzincer L(X).

is the ccmmuted mastrix poly-

~
if M(R) = 0, then R is 2 left sclvent of M(X).

An important association between the remainder,
L{X}, and the dividend, M(X), in eguation (2.1), will now be
given. It generalizes the fact that for scalar polynomials
the dividend and remzinder zre equal when evzluated at the

rcots of the divisor.

Ccorollary 2.2 If R is a left solvent of W{X), the

Proof: Let Q(X) = M{X) - L(X). Then, ic is easlly shown

&) = x™Pax) + PTLGOR, ¢ e - R00F_L (2.3)
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The result immediately follows since Q(R) = Q

Hy
o]
3

all left solvents of W(X). #
The case where p = 1 1is very useful in this paper.
Here we have W(X) = X = R where R 1s both 2 left and rignt

solvent of W(X). Then Theorem 2.1 shows that
M(X) = F(X)X - RF(X) + L (2.4)

where L is a constant matrix. Now Corollary 2.1 shows “hat
~
L = M(R), and, thus,

A

M(X) F(X)X - RF(X) + M(R). (2.5)

A
There is a corresponding theory for M(X). In this
P g ¥

case, equation (2.1) 1s replaced by

M%) = xPAx) + xp'lzfa{x)al +oeee 4 ﬁ(x)sp + X(X) (2.6)

and Corollary 2.1 beccmes the following.

Corollary 2.2 1If S is a right solvent of W(X), then

== 2 I=gnt
N(S) = M(S).

We again consider the case of P = 1. Let
W(X) = X = S. Then equation (2.5) becomes

Rx) = A0 - A(X)s + M(s). (2.

~

~—

Restricting X to a scalar matrix AI, and noting that

o293
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M(A) = M{A), we get Bézout's Theorem (see Gantmacher [2,

vei. I, p. 811) from equations (2.5) and (2.7):

H{A) = {IA-R)F(A) + M(R) = H(A)(Ir=S) + M(S) (2.8)

1

for any matrices R and S. £ in addition R and S are leflt

and right colvents, respectively, of M(X), then

and

=
>
~
n
—~
b
>
1
2}
s
"y
—~
>
~
m
w
—
>
~
—~
H
>
1
9]
~
.
—~
no
b
=
~

The use of blcck matrices 1s fundamental in this

worx. rcr notaticnal purposes it 1s usel to have a concept

Definition 2.2 Let A be a rmatrix with block structure (Bij)

with B,, matrices of order n. The Dlock trancrose £ dimen-
13 o1 . 2a€ ROt - ally, o= A7
n 3 PR n) 2 s 2y wed kil R \ *
sicn n of A, dernotec A , is the matrix with tloeck struc-

The crder of the block transpcse will gene
dropped when it is clear. Note that, in gensral, A
except when n = 1.
A scalar polynomial exactly divides another scalar

poiynomial, if all the roots of the divisor are rcots of the
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dividend. A generalization of the scalar polynomial result

is given next. The notation is that of Theorenm 2.1.

Cerollary 2.3 If W(X) has p left solvents, Rl’.'.’Hp which
(

are also left sclvents of M(X), and if V' (R,,»++,R_) is non-
I d

singular, then the remainder L(X) = Q.

Prcof: Corollary 2.1 shows that ﬁ(Ri) =0 for

i =1,++,p. Since VD(RI,---,R ) 1s nocnsingular

p 3
and since
IR, e pE7E Ly £(r,)
P p-1 s
I R, R Lo £(r,)
. . . . = . = 0
I Ry eer RETHIA L L(r)
s T l \ [¢] P

it follows that L{(X) = g. Thus,

M) = FOOXP 4+ BlF(X)Xp'l +oee + BF(X). #(2.12)

From equation (2.11) 1t follows that the eigen-
values of any solvent (left or right) of M(X) are latent
roots of M(A). These equations allow us o think of r

T

(left) solvents of M(X) as right (left) facto=s of M{X).
In the scalar pclynomial case, due to commutivity,
right and left factors are equivalent. Relations between

left and right solvents can now be given.
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Since SJ and Ei have no comuion elgenvalues,

.) = 0 uniquely. This
v
solution of AX = XB has th

£ =25, 1f and only if A and

Given a ieft solvent R, of X
that Fi(X) exists uniquely. If S iz a
and 1f F,(S) 1s nonsingular (S s not

4
e
then equation (2.12) shows that

This gives an association between left

2,2 Block Cormpanion Matrix. A useful

follows, since the

¢ unlque solution

(X), Theorzm 2.1 shows

rignt scivent of M(X)

a weak zolvant of F&(X)L

. (2.14)

and right solvents.

2

toel in the study of

scalar polynomlals s the companion matrix. The elgenvalues

of a companicn matrix are the roots of

nomlal. See Wiikinson [22, p. 12]. &

its associated poly-

generalization of this

P
4
$
“
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is given below. Definition 2.3, Theorem 2.2 and Cerollary

2.5 can be found in Lancaster [13].

Cefinition 2.3 Given a metrix polynomial

MX) = X™ o+ Alx“l $oeee A,

the blocx companion matrix associated with it is

o
- o

.

.

.

o

U

k=1

1
U
>

c = m-1 (2.15)

It is well known that the eigenvalues of the Slock
companion matrix are latent roots of the associated lambda-
matrix. See Wilkinson [22, p. 12]. Simple algebraic manipu-

lation yields this result.
Theorem 2.2 Det(C-AI) = (-1)m“det(xxm+AlAm'l+-~~+A,).

Since C 1s an mn by mn matrix, we immediately‘cb—

tain the following.

Corcllary 2.5 M(X) has exactly mn finite latert roots.

The form of the block companion matrix couid have
been chosen differently. Theorem 2.2 also holds for the

block transpose of the companion matrix:
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(m-1)
By
(111) ;(l) is the right eigenvector of C, where
v 1
oy
M(X)e (m
T 2o A p {102 4y (D) (2.17)
i

Procf: Parts (1) and (i1) are easily verified by substi-
tutions into the appropriate eigenvaiue probilex.

For part (iii), consider

cen - (m-1) (m-1)
0 0 Qm di Idi
I _Am—l . .
. . o .
| .. : dil) i d§;)
| S P R

Multiply out; multiply the J“h component eguation

"—
by AY l; and add. The result is

E, (0 = n(nal® o H, (1), (2.1

\0
~

where

H(A) = dim'l) + d§“‘2)x + e s d§°)xm‘1. (2.2

(&)
~



[ SRR,

Y

Equation (2.19) at ) = Py shows that
. ( . (0)
A(D,)dio) = 0 and, hence, A, 1s a right latent

vector. Manipulating ecuation (2.19), the result
)

P ( 4
equation (2.17) with d;o' = by and d§°) = bf”
1 i i
for 3§ = 1,000 m-1, foliows, #
2.3 Structure of Solvents. The elgenvectors 2nd principal

vectors of a sclvent w1l Ncw de censidered. From equation

Lanczzter [12, o. 5CJ gives the characterization cf a solvent

that has cniy elementary iivisors

Thecrem 2.4 1¢ ¥{X) has n linesriy independent »rishe latent

S, bl,---,bn, corresponding to latent Ioots Dl""’cn’
Lthen Qag™* is 2 rient soivent, where Q = [bl,...,u“] and

-] -
Proof: From miqaqTly - (or R~V Lt P

Tesult follews, since QA" + AIQAH_‘ +oers 44 Q
Is fust M(ci)bi =0 for 4 = I, ,n. #
it follows from the apove proof that if a solvent

1s dlagonalizadle, then 1t must pe “he form QAQ™>, as in <he

above theorenm.

Coerollary 2.6 If M(3) has mn distinet latent r20ts, and the

set of right iatent vectors satisfy the Hear conditicon (that
2= 8L rognt —=X2IS satlsiy =200 udon

every set of n of then are linearly independent) then there
=2TE0 set =% L0S7 are = L Lnere

—— iR

mny e . .
are exactly ( : different right solvents.
\n/ T
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Consider next the case of a solvent which is not
diagonalizabile. In a manner similar to Roth [18], we cecn-

sider the Principz2l vectors cf a solvent.

Definition 2.4 The Jth principal iatent vectors of M(X) with

<t

ITespect to the lasent roct p is PJ’ which satisfies

1 {J=1 1 J—E D “ee D =
=7 l)(“’)Pl * =T )(°)‘2 * *Mle)ey =0,
(2.21)
where
. Xk
gy - S n(n).
ax

Note that the first principal latent vector is 2 latent

vector.

Theoren 2.5 The principal vectors of 3 sclvent are principal
— /- =COrs of a — = - ncipal

latent vectors of M()).
—_— ZOTS of

Proof: mTo alleviate notational difficult:zes censider the
3

case wnere m = and n = g = 3. The Jordan

form of the solvent is g

n
©
—
t
o
ot

P = (P1P2P3) where 8 = pyp~1 is the solvent
of M(X) = x2 4 AYX + Ay Thus,





















































































































































































































































































































